scholarly journals Ozone layer adaptive model from direct relationship between solar activity and total column ozone for the tropical equator-Andes-Colombian region

Atmósfera ◽  
2018 ◽  
Vol 31 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Julio César González-Navarrete ◽  
◽  
Julián Salamanca ◽  
Ingrid Mónica Pinzón-Verano ◽  
◽  
...  
2018 ◽  
Vol 18 (2) ◽  
pp. 1379-1394 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Johannes Staehelin ◽  
Joanna D. Haigh ◽  
...  

Abstract. Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer–Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60–90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 169 ◽  
Author(s):  
Tatiana Egorova ◽  
Eugene Rozanov ◽  
Pavle Arsenovic ◽  
Timofei Sukhodolov

The ozone layer is well observed since the 1930s from the ground and, since the 1980s, by satellite-based instruments. The evolution of ozone in the past is important because of its dramatic influence on the biosphere and humans but has not been known for most of the time, except for some measurements of near-surface ozone since the end of the 19th century. This gap can be filled by either modeling or paleo reconstructions. Here, we address ozone layer evolution during the early 20th century. This period was very interesting due to a simultaneous increase in solar and anthropogenic activity, as well as an observed but not explained substantial global warming. For the study, we exploited the chemistry-climate model SOCOL-MPIOM driven by all known anthropogenic and natural forcing agents, as well as their combinations. We obtain a significant global scale increase in the total column ozone by up to 12 Dobson Units and an enhancement of about 20% of the near-surface ozone over the Northern Hemisphere. We conclude that the total column ozone changes during this period were mainly driven by enhanced solar ultra violet (UV) radiation, while near-surface ozone followed the evolution of anthropogenic ozone precursors. This finding can be used to constrain the solar forcing magnitude.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Seema Pande ◽  
Mahesh Chandra Mathpal ◽  
Bimal Pande

Using 30 years data (1986-2015) we have made an attempt to study the dependency of total column ozone (TCO) on solar activity features: solar flares (SF), solar active prominence (SAP) and sunspot numbers (SN) for two hill stations of Uttarakhand viz. Nainital (29.40 N.79.470E) and Mussorie (30.270 N 78.060 E) by Artificial neural network (ANN) technique. Our study supports the fact that solar activity features contribute to the production of ozone.


2016 ◽  
Vol 8 (3) ◽  
pp. 77
Author(s):  
Carolyne M. M. Songa ◽  
Jared H. O. Ndeda ◽  
Gilbert Ouma

In this study, a statistical analysis between three solar activity indices (SAI) namely; sunspot number (ssn), F10.7 index (sf) and Mg II index (mg) and total column ozone (TCO) time series over three cities in Kenya namely; Nairobi (1.17º S; 36.46º E), Kisumu (0.03º S; 34.45º E) and Mombasa (4.02º S; 39.43º E) for the period 1985 - 2011 are considered. Pearson and cross correlations, linear and multiple regression analyses are performed. All the statistical analyses are based on 95% confidence level. SAI show decreasing trend at significant levels with highest decrease in international sunspot number and least in Mg II index. TCO are highly correlated with each other at (0.936< r < 0.955, p < 0.001). SAI are also highly correlated with each other at (0.941< r < 0.976, p < 0.001) and are significantly positively correlated with TCO over the study period except Mg II index at Kisumu. TCO and SAI have correlations at both long and short lags. At all the cities, F10.7 index has an immediate impact and Mg II index has a delayed impact on TCO. A linear relationship exists between the two variables in all the cities. An increase in TCO of about 2 – 3 % (Nairobi), 1 – 2% (Kisumu) and 3 – 4 % (Mombasa) is attributed to solar activity indices. The multiple correlation coefficients and significant levels obtained show that 3 – 5% of the TCO at Nairobi, Kisumu and Mombasa can be predicted by the SAI.


1997 ◽  
Vol 102 (D1) ◽  
pp. 1561-1569 ◽  
Author(s):  
C. S. Zerefos ◽  
K. Tourpali ◽  
B. R. Bojkov ◽  
D. S. Balis ◽  
B. Rognerund ◽  
...  

2019 ◽  
Vol 24 (3) ◽  
pp. 425-439
Author(s):  
Julio César González-Navarrete ◽  
Julian Salamanca

The aim of this paper is to broaden the scope of a recent adaptive model in order to obtain predictions of total column ozone (TCO) trends over the Amazon Inter-Tropical Confluence Zone (ITCZ). The adaptive model makes daily TCO predictions over the tropical equator-Andes-Region, relying on seasonal patterns and the solar cycle. This study uses daily observations of the sunspot number cycle, given by the World Data Center for the production, preservation and dissemination of the international sunspot number (Royal Observatory of Belgium), and satellite total-column ozone data, collected by NASA (January 1979 to April 2018), for two Colombian locations: one in and one adjacent to the ITCZ. The agreement between daily total-column predictions by the adaptive model and satellite observations is excellent. Daily averaged relative errors around of 3.7 % and 2.8 % for both locations are reported herein.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eugene Rozanov ◽  
Tatiana Egorova ◽  
Luca Egli ◽  
Arseniy Karagodin-Doyennel ◽  
Timofei Sukhodolov ◽  
...  

The study investigates the representativeness of the total column ozone (TCO) measurements from the ground-based instruments located at the Arosa/Davos stations in Switzerland to analyze the global ozone layer behavior in the past and future. The statistical analysis of the satellite and model data showed a high correlation of the ground-based TCO data with the near-global and northern hemisphere annual mean TCO for the 1980–2018 period. Addition of the Arosa/Davos TCO data as a proxy to the set of standard explanatory variables for multiple linear regression analysis allows estimating the TCO behavior from 1926 up to the present day. We demonstrate that the real-time measurements and high homogeneity level of the Arosa/Davos TCO time series are also beneficial for quick estimates of the future ozone layer recovery.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Seema Pande ◽  
Mahesh Chandra Mathpal ◽  
Bimal Pande

Using 30 years data (1986-2015) we have made an attempt to study the dependency of total column ozone (TCO) on solar activity features: solar flares (SF), solar active prominence (SAP) and sunspot numbers (SN) for two hill stations of Uttarakhand viz. Nainital (29.40 N.79.470E) and Mussorie (30.270 N 78.060 E) by Artificial neural network (ANN) technique. Our study supports the fact that solar activity features contribute to the production of ozone


Sign in / Sign up

Export Citation Format

Share Document