scholarly journals Realization of Maxwell’s Hypothesis: A Heat-Electric Conversion in Contradiction to the Kelvin Statement

Author(s):  
Xinyong Fu ◽  
Zitao Fu

In a vacuum tube, two identical and parallel Ag-O-Cs surfaces, with a work function of approximately 0.8eV, ceaselessly emit thermal electrons at room temperature. The thermal electrons are so controlled by a static uniform magnetic field that they can fly only from one Ag-O-Cs surface to the other, resulting in a potential difference and an electric current, and transferring a power to a resistance outside the tube. The ambient air is a single-temperature heat reservoir in the experiment, and all the heat extracted by the tube from the air is converted into electric energy without producing other effects. The authors maintain that the experiment is in contradiction to the Kelvin statement of the second law of thermodynamics. We have a video on you tube showing the main measuring process of the experiment: https://www.youtube.com/watch?v=PyrtC2nQ_UU.

Author(s):  
Xinyong Fu ◽  
Zitao Fu

In a vacuum tube, two identical and parallel Ag-O-Cs surfaces, with a work function of approximately 0.8eV, ceaselessly emit thermal electrons at room temperature. The thermal electrons are so controlled by a static uniform magnetic field that they can fly only from one Ag-O-Cs surface to the other, resulting in a potential difference and an electric current, and transferring a power to a resistance outside the tube. The ambient air is a single heat reservoir in the experiment, and all the heat extracted by the tube from the air is converted into electric energy without producing other effect. The authors maintain that the experiment is in contradiction to the Kelvin statement of the second law of thermodynamics. We have a video on you tube showing the main measuring process of the experiment: https://www.youtube.com/watch?v=PyrtC2nQ_UU.


Author(s):  
Xinyong Fu ◽  
Zitao Fu

In a vacuum tube, two identical and parallel Ag-O-Cs surfaces, with a work function of approximately 0.8eV, ceaselessly emit thermal electrons at room temperature. The thermal electrons are so controlled by a static uniform magnetic field that they can fly only from one Ag-O-Cs surface to the other, resulting in a potential difference and an electric current, and transferring a power to a resistance outside the tube. The ambient air is a single heat reservoir in the experiment, and all the heat extracted by the tube from the air is converted into electric energy without producing any other effect. The authors maintain that the experiment is in contradiction to the Kelvin statement of the second law of thermodynamics.


Author(s):  
Xinyong Fu ◽  
Zitao Fu

In a vacuum tube, two identical and parallel Ag-O-Cs surfaces, with a work function of approximately 0.8eV, ceaselessly emit thermal electrons at room temperature. The thermal electrons are so controlled by a static uniform magnetic field that they can fly only from one Ag-O-Cs surface to the other, resulting in a potential difference and an electric current, and transferring a power to a resistance outside the tube. The ambient air is a single heat reservoir in the experiment, and all the heat extracted by the tube from the air is converted into electric energy without producing other effect. The authors maintain that the experiment is in contradiction to the Kelvin statement of the second law of thermodynamics.


Author(s):  
Xinyong Fu ◽  
Zitao Fu

In a vacuum tube, two identical and parallel Ag-O-Cs surfaces, A and B, with a work function 0.8eV, ceaselessly emit thermal electrons at room temperature. The thermal electrons are controlled by a static uniform magnetic field (a magnetic demon), and the number of electrons migrate from A to B exceeds the one from B to A (or vice versa). The net migration from A to B quickly results in a charge distribution, with A charged positively and B negatively. A potential difference between A and B emerges, and the tube outputs an electric current and a power to a load (a resistance, e.g.). The ambient air is a single heat reservoir in the experiment, and all the heat extracted by the tube from the air is converted into electric energy without producing other effects. We believe the experiment is in contradiction to the Kelvin statement of the second law.


Author(s):  
Xinyong Fu ◽  
Zitao Fu

In a vacuum tube, two identical and parallel Ag-O-Cs surfaces, A and B, with a work function of 0.8eV, ceaselessly emit thermal electrons at room temperature. The thermal electrons are controlled by a static uniform magnetic field (a magnetic demon), and the number of electrons migrate from A to B exceeds the one from B to A, (or vice versa). The net migration from A to B quickly results in a charge distribution: A charged positively and B negatively. A potential difference between A and B emerges, and the tube outputs ceaselessly an electric current and a power to a resistance (a load) and cools itself slightly. The ambient air is a single heat reservoir in the experiment, and all the heat extracted by the tube from the air is converted into electric energy without producing other effect. We believe the experiment is in contradiction to the Kelvin statement of the second law.


Author(s):  
Xinyong Fu ◽  
Zitao Fu

In a vacuum tube two identical and parallel Ag-O-Cs emitters A and B (work function 0.8eV) ceaselessly emit thermal electrons at room temperature. The thermal electrons are controlled by a static uniform magnetic field so that the number of electrons migrate from A to B exceeds the one from B to A (or vice versa). The net migration of thermal electrons from A to B quickly results in a charge distribution of A charged positively and B negatively, and a potential difference between A and B emerges, enabling a continuous output current and a stable power to an external load (e.g., a resistor). Thus, the tube cools down (slightly). The (slightly) cooled tube extracts heat from ambient air, and all the heat is converted into electric energy without other effect. We believe the experiment is in contradiction to the Kelvin statement of the second law.


2019 ◽  
Vol 139 (7) ◽  
pp. 217-218
Author(s):  
Michitaka Yamamoto ◽  
Takashi Matsumae ◽  
Yuichi Kurashima ◽  
Hideki Takagi ◽  
Tadatomo Suga ◽  
...  

10.2514/3.875 ◽  
1997 ◽  
Vol 11 ◽  
pp. 165-172
Author(s):  
S. Rao ◽  
E. L. Mulkay ◽  
J. M. Ochterbeck

2021 ◽  
Author(s):  
Wenjing Li ◽  
Shun Li ◽  
Lihua Luo ◽  
Yichen Ge ◽  
Jiaqi Xu ◽  
...  

The catalyst-free oxidative cleavage of (Z)-triaryl-substituted alkenes bearing pyridyl motif with ambient air under irradiation of blue LED at room temperature has been developed. The reaction was facile and scalable,...


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


Sign in / Sign up

Export Citation Format

Share Document