scholarly journals The Impact of Morphological Features on Summer Temperature Variations on the Example of two Residential Neighborhoods in Ljubljana, Slovenia

Author(s):  
Alenka Fikfak ◽  
Saja Kosanović ◽  
Miha Konjar ◽  
Janez P. Grom ◽  
Martina Zbašnik-Senegačnik

The study conducted in this paper is focused on a predominantly residential area of the City of Ljubljana – Koseze, which is characterized by generally favorable (bio)climatic conditions. Nonetheless, thermal satellite imaging showed that residential neighborhoods within the Koseze district display unexpected variations in summer temperatures. This observation called into question the benefits of existing bioclimatic features and indicated the need to investigate and compare two neighborhoods with similar urban parameters, with the aim to identify morphological differential characteristics impacting urban heat island (UHI) intensity. By applying the study methodology based on a literature review, surveys of key precedents, detailed mapping in two Koseze locations, in situ measurements, observations and recordings, thermal imaging and the analyses of statistical data, as well as by defining the four main categories of morphological urban parameters – structure, cover, fabric and metabolism, it was concluded that both neighborhoods have common morphological elements mitigating the UHI effect. Additionally, it was found that the neighborhood with higher UHI intensity has several less favorable features, such as busier roads, larger surface of parking corridors, and the existence of underground parking space. The traffic as an element of urban morphology hence represents the main cause of differences among UHI levels in the two Koseze neighborhoods.

Author(s):  
Constantin Bulimaga ◽  
◽  
Anastasia Portarescu ◽  

Anthropogenic activities cause damage to the natural ecosystems in the city in various ways, which contributes to the reduction of biodiversity. Considering that biodiversity is becoming more vulnerable to the impact action triggered by urban activities is necessary to monitor it in order to take urgent measures to protect and preserve it. The plant biodiversity study methodology includes methods that help determine phytocenosis parameters and assess biomass in order to estimate the productive potential of phytocenosis. Carrying out the research according to the proposed methodology will make it possible to assess the anthropogenic impact on the terrestrial and riparian vegetation.


2019 ◽  
Author(s):  
Bambang Sulistyantara ◽  
Imawan W. Hidayat ◽  
A. Nasirudin Taher ◽  
Hendrawan

Trees are essential elements of an urban space. The presence of trees in urban areas is not only appreciated as physical attribute, but beyond this, it serves a fundamental function in balancing and conserving urban ecosystem. Especially in tropical countries like Indonesia which receive high levels of solar radiation, trees contribute to the protection of urban areas from the impact of excessive micro-climatic conditions. But, the presence of trees sometimes resulted in the accidents for the residences because of broken branches and human injuries. This situation leads the city to prepare a tree inventory system, which is beneficial in giving the information about tree conditions and thus the information that would be useful for tree maintenance activities. The tree inventory on application for the city of East Jakarta was built for this purpose, comprising a tree inventory and easy access to the database. The application connects the database source with the GIS map, so that the users could retrieve information for each kind of data.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
DMSLB Dissanayake ◽  
Takehiro Morimoto ◽  
Yuji Murayama ◽  
Manjula Ranagalage

<p><strong>Abstract.</strong> Exploring changes in land use and land cover (LULC) in the city area and its surrounding is important to understand the variation of surface urban heat island (SUHI) and surface urban heat island intensity (SUHII). The SUHII can be calculated based on the local climate zone by using land use and land cover compossition of the city and based on the urban rural zone . The objective of this research is to examine the spatiotemporal changes of LULC and the impact of its composition for the formation of SUHI in Addis Ababa City, Ethiopia based on the urban rural zones.</p><p> The mean center of the central business district of the Addis Ababa City was considered as the central point of the study area. We represented the 30&amp;thinsp;km&amp;thinsp;&amp;times;&amp;thinsp;30&amp;thinsp;km geographical area as a study area with a 15km radius from the central point. As data sources, multi-temporal satellite data provided by the United States Geological Survey (USGS) were used in respect to the years of 1986, 2001, and 2016. In the methodology, we first completed the classification of LULC by using pixel-oriented method for the three years and the validation of the classification has been made. For the classification five LULC classes were identified such as forest, impervious surface, grass land, bare land and crop land. Afterward, land surface temperature (LST) has been computed for three years respectively. Finally, urban rural gradient zones (URGZs) have been generated as a set of polygons with 210m distance in each zone from the central point of the study area. In order to evaluate the SUHII along the URGZs in respect to the LULC, the following analyses were accomplished: (i) the relationship between mean LST and composition of the LULC was computed, (ii) the SUHII was calculated based on the LST variation of main LULC categories and the temperature difference between URGZs, (iii) multi-temporal and multi-directional SUHII was computed, and (iv) linear regression analyses were used to assess the correlations of the mean LST with composition of LULC.</p><p> The results of the analyses show that (i) distribution pattern of SUHII has changed over the study period as results of changes in LULC, and (ii) mean LST gradually declines from city centre to outside of the city , then it can be seen increasing trends due to the effect of bare lands in rural area. This pattern can be seen over the three years as the result of multi-directional approach. The methodology presented will be able to apply other cities which are showing similar growth pattern by making necessary calibration, and our finding can be used as a proxy indicator to introduce appropriate landscape and town planning in a sustainable viewpoint in Addis Ababa City.</p>


2019 ◽  
Author(s):  
Bambang Sulistyantara ◽  
Imawan Wahyu Hidayat ◽  
A. Nasirudin Taher ◽  
Hendrawan

Trees are essential elements of an urban space. The presence of trees in urban areas is not only appreciated as physical attribute, but beyond this, it serves a fundamental function in balancing and conserving urban ecosystem. Especially in tropical countries like Indonesia which receive high levels of solar radiation, trees contribute to the protection of urban areas from the impact of excessive micro-climatic conditions. But, the presence of trees sometimes resulted in the accidents for the residences because of broken branches and human injuries. This situation leads the city to prepare a tree inventory system, which is beneficial in giving the information about tree conditions and thus the information that would be useful for tree maintenance activities. The tree inventory on application for the city of East Jakarta was built for this purpose, comprising a tree inventory and easy access to the database. The application connects the database source with the GIS map, so that the users could retrieve information for each kind of data.


2018 ◽  
Author(s):  
Nathalie Long ◽  
Thomas Gardes ◽  
Julia Hidalgo ◽  
Valéry Masson ◽  
Robert Schoetter

This article presents the development and application to a set of French urban agglomerations of a method for Local Climate Zones (LCZ) attribution using the open-source language R. The LCZs classify the urban fabric at high spatial scale (such as a block of houses) according to its morphological characteristicsand land use. The LCZ classification is carried out for 42 urban agglomerations and is then related to urban heat island intensity (UHII) obtained from numerical simulations at a spatial resolution of 250m. The objective is to study the adequacy of the LCZ classification to characterise the impact of urban morphology on the UHII. The variance analysis (ANOVA) carried out confirms the highly significant relationship between LCZs and the UHII for a given urban agglomeration. For all the urban agglomerations in the sample, linear regression models show a significant correlation between the percentages of surface covered by different LCZ and the mean UHII for the time periods tested (21-23 UTC), with adjusted coefficients of determination higher than 0.40.


2021 ◽  
Author(s):  
Umberto Berardi ◽  
Yupeng Wang

In the last decades, several studies have revealed how critical the urban heat island (UHI) effect can be in cities located in cold climates, such as the Canadian one. Meanwhile, many researchers have looked at the impact of the city design over the urban microclimate, and have raised concerns about the development of too dense cities. Under the effect of the “Places to Growth” plan, the city of Toronto is experiencing one of the highest rates of building development in North America. Over 48,000 and 33,000 new home permits were issued in 2012 and 2013 respectively, and at the beginning of 2015, almost 500 high-rise proposals across the Greater Toronto Area were released. In this context, it is important to investigate how new constructions will affect the urban microclimate, and to propose strategies to mitigate possible UHI effects. Using the software ENVI-met, microclimate simulations for the Church-Yonge corridor both in the current situation and with the new constructions are reported in this paper. The outdoor air temperature and the wind speed are the parameters used to assess the outdoor microclimate changes. The results show that the new constructions could increase the wind speed around the buildings. However, high-rise buildings will somewhat reduce the air temperature during day-time, as they will create large shadow areas, with lower average mean radiant temperature.


Sign in / Sign up

Export Citation Format

Share Document