scholarly journals Boundary Detection and Enhancement of Islanding Operation Investigation Under Fault Condition

Author(s):  
Aref Pouryekta ◽  
Vigna K. Ramachandaramurthy ◽  
Sanjeevikumar Padmanaban ◽  
Lucian MIHET-POPA

Distribution systems can form islands when faults occur. Each island represents a subsection with variable boundaries subject to the location of a fault(s) in the system. A subsection with variable boundaries is referred to as island in this paper. For operation in autonomous mode, it is imperative to detect the island configurations and stabilize these subsections. This paper presents a novel scheme for the detection of islanding boundaries and stabilizing the system during autonomous operation. In the first stage, a boundary detection method is proposed to detect the configuration of the island. In the second stage a dynamic voltage sensitivity factor (DVSF) is proposed to assess the dynamic performance of the system. In the third stage, a wide area load shedding program is adopted based on DVSF to shed the load in weak busbars and stabilize the system. The proposed scheme is validated and tested on a generic 18-bus system using a combination of EMTDC/PSCAD and MATLAB softwares.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 992
Author(s):  
Phi-Hai Trinh ◽  
Il-Yop Chung

Distributed energy resources (DERs), including renewable energy resources (RESs) and electric vehicles (EVs), have a significant impact on distribution systems because they can cause bi-directional power flow in the distribution lines. Thus, the voltage regulation and thermal limits of the distribution system to mitigate from the excessive power generation or consumption should be considered. The focus of this study is on a control strategy for DERs in low-voltage DC microgrids to minimize the operating costs and maintain the distribution voltage within the normal range based on intelligent scheduling of the charging and discharging of EVs, and to take advantage of RESs such as photovoltaic (PV) plants. By considering the time-of-use electricity rates, we also propose a 24-h sliding window to mitigate uncertainties in loads and PV plants in which the output is time-varied and the EV arrival cannot be predicted. After obtaining a request from the EV owner, the proposed optimal DER control method satisfies the state-of-charge level for their next journey. We applied the voltage sensitivity factor obtained from a load-flow analysis to effectively maintain voltage profiles for the overall DC distribution system. The performance of the proposed optimal DER control method was evaluated with case studies and by comparison with conventional methods.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1615
Author(s):  
Mehdi Firouzi ◽  
Saleh Mobayen ◽  
Hossein Shahbabaei Kartijkolaie ◽  
Mojtaba Nasiri ◽  
Chih-Chiang Chen

In this paper, an incorporated bridge-type superconducting fault current limiter (BSFCL) and Dynamic Voltage Restorer (DVR) is presented to improve the voltage quality and limiting fault current problems in distribution systems. In order to achieve these capabilities, the BSFCL and DVR are integrated through a common DC link as a BSFCL-DVR system. The FCL and DVR ports of the BSFCL-DVR system are located in the beginning and end of the sensitive loads’ feeder integrated to the point of common coupling (PCC) in the distribution system. At first, the principle operation of the BSFCL-DVR is discussed. Then, a control system for the BSFCL-DVR system is designed to enhance the voltage quality and limit the fault current. Eventually, the efficiency of the BSFCL-DVR system is verified through the PSCAD/EMTDC simulation.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Sara J. Ríos ◽  
Daniel J. Pagano ◽  
Kevin E. Lucas

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.


2021 ◽  
Vol 13 (12) ◽  
pp. 6644
Author(s):  
Ali Selim ◽  
Salah Kamel ◽  
Amal A. Mohamed ◽  
Ehab E. Elattar

In recent years, the integration of distributed generators (DGs) in radial distribution systems (RDS) has received considerable attention in power system research. The major purpose of DG integration is to decrease the power losses and improve the voltage profiles that directly lead to improving the overall efficiency of the power system. Therefore, this paper proposes a hybrid optimization technique based on analytical and metaheuristic algorithms for optimal DG allocation in RDS. In the proposed technique, the loss sensitivity factor (LSF) is utilized to reduce the search space of the DG locations, while the analytical technique is used to calculate initial DG sizes based on a mathematical formulation. Then, a metaheuristic sine cosine algorithm (SCA) is applied to identify the optimal DG allocation based on the LSF and analytical techniques instead of using random initialization. To prove the superiority and high performance of the proposed hybrid technique, two standard RDSs, IEEE 33-bus and 69-bus, are considered. Additionally, a comparison between the proposed techniques, standard SCA, and other existing optimization techniques is carried out. The main findings confirmed the enhancement in the convergence of the proposed technique compared with the standard SCA and the ability to allocate multiple DGs in RDS.


2019 ◽  
Vol 5 (5) ◽  
pp. 1197-1204 ◽  
Author(s):  
Gulfam Shahzad ◽  
Rashid Rehan ◽  
Muhammad Fahim

The assessment of existing water supply services was carried out through selected performance indicators with the aim of using that data in future for strategic planning of urban Mardan. The key performance indictors studied were selected to assess both the quantity and quality of water. The quality of water was assessed by turbidity, pH, and E-coli tests for samples collected at the start, middle, and tail end of the distribution system. The quantity of water supplied was measured by calculating discharges from water tapes at the three selected locations in the distribution system. A total of thirty samples were collected from ten union councils out of fourteen covering urban Mardan. A number of issues are highlighted in the overall water supply infrastructure and short, mid, and long term remedial measures are recommended. The results are presented in the form of an interactive map using Google Earth and VBA based dynamic database. It was found that the overall quality of water is generally acceptable for drinking. However, the presence of bacteria is an issue in many cases which needs to be resolved. A significant decrease in discharge is observed in the distribution systems away from the source due to leakages and illegal connections. A comprehensive overhaul of both management and infrastructure is required for sustainable and satisfactory level of services.


Author(s):  
Sahar M. Sadek ◽  
Amal A. Hassan ◽  
Faten H. Fahmy ◽  
Amgad A. El-Deib ◽  
Hosam K.M. Yousef

The intermittent nature of photovoltaic (PV) generation causes the voltage to fluctuate and may lead to instability, especially, in case of high penetration. In this paper, a methodology is proposed to control the reactive power generation of PV-inverters. The objective is to mitigate the voltage fluctuations at the point of common coupling (PCC) resulted from increasing or decreasing the active power output of PV plants which is dependent on solar radiation level. The generic PV-inverter models developed and recommended by the Renewable Energy Modeling Task Force (REMTF) of the Western Electricity Coordinating Council (WECC) is used to analyze the effect of high PV penetration on the dynamic voltage stability of distribution networks. Then, the tested distribution network with the embedded PV plants is modeled and simulated using PSS/E software. Levels of control that are built-in PV-inverters are tested in the case of normal operation and during disturbances. Comparison results show that the most suitable control methodology in case of disturbances and after fault clearance is the local voltage control. While the plant voltage control with coordinated V/Q control is the most preferable control methodology during normal operation.


Sign in / Sign up

Export Citation Format

Share Document