scholarly journals Metal Catalyzed Suzuki-Miyaura Cross-Coupling– Efficient Methodology for Synthesis the Natural and non-Natural biological active Molecules

Author(s):  
Hira Israr ◽  
Shazia Kaousar ◽  
Nasir Rasool ◽  
Gulraiz Ahmad ◽  
Muhammad Nazirul Mubin Aziz ◽  
...  

New class of biologically active and non-active compounds can be synthesized via transition metal mediated Suzuki cross coupling reaction that has a great impact on the advancement of organic chemistry. These resulted products can lend a helping hand in pharmaceutical and polymer chemistry for the betterment of mankind. Suzuki-Miyaura cross coupling reaction is one of the best tools through which many natural and non-natural compounds can be synthesized.

Synthesis ◽  
2017 ◽  
Vol 49 (23) ◽  
pp. 5211-5216
Author(s):  
Hui Zhu ◽  
Xing Liu ◽  
Cai-Zhu Chang ◽  
Zhi-Bing Dong

A simple and efficient copper-catalyzed S-arylation of aryl­thioureas was developed. Arylthioureas were smoothly converted into aryl-isothioureas with good yield by copper-catalyzed S-arylation. The features of this method include the use of a ligand-free catalyst, good yield, short reaction time, and broad substrate scope. The method provides a facile and convenient preparation of some potentially biologically active compounds.


Synthesis ◽  
2022 ◽  
Author(s):  
Zhi-Shi Ye ◽  
Jin-cheng Li ◽  
Gang Wang

Optically active indole derivatives are ubiquitous in natural products and widely recognized as privileged components in pharmacologically relevant compounds. Therefore, developing catalytic asymmetric approaches for constructing indole derivatives is highly desirable. In this short review, transition-metal-catalyzed enantioselective synthesis of indoles from 2-alkynylanilines is summarized. 1 Introduction 2 Aminometalation triggered asymmetric cross-coupling reaction/insertion 2.1 Asymmetric Cross-Coupling Reaction 2.2 Asymmetric insertion of C=O, C=C and C≡N bonds 3 Asymmetric relay catalysis 4 Conclusion


2021 ◽  
Author(s):  
Pradipta Das ◽  
Eliot Woods ◽  
Jack Ly ◽  
Jack Olding ◽  
Kayla Presley ◽  
...  

Metallaphotoredox catalysis combines the well-established mechanisms of transition-metal-catalyzed cross-coupling reactions with one-electron redox manipulations enabled by light. In most cases, a transition metal or organic dye serves as the photoredox catalyst while a ground-state Pd or Ni catalyst performs the organometallic steps. Cross-coupling mechanisms that rely on direct photoexcitation of a light-absorbing substrate have the potential to access distinct mechanisms and deliver unique selectivity based on the substrate’s excited-state properties. In this report, we describe a photoinduced, Ni-catalyzed Suzuki–Miyaura cross coupling reaction that selectively functionalizes BODIPY chromophores, a versatile class of tunable, bright, photostable fluorophores. Using a bis-iodo BODIPY substrate, the selectivity for mono- vs. bis-arylation was found to be governed by a remote substituent that subtly alters the excited-state properties of the substrate. Consistent with a substrate photoexcitation mechanism, high chemoselectivity is also observed in mixtures of chromophores with distinct excited-state properties. This reaction is compatible with a variety of substituted BODIPY chromophores and boronic acids and esters, enabling the rapid synthesis of unsymmetrically-substituted chromophores.


Sign in / Sign up

Export Citation Format

Share Document