scholarly journals Stochastic Gravity and Ontological Quantum Mechanics

Author(s):  
Thomas C Andersen

Some physicists surmise that gravity lies outside of quantum mechanics. Thus theories like the standard semiclassical theory of quantum to gravity coupling (that of Rosenfeld and Møller) are possible real models of interaction, rather than a mere approximation of a theory of quantum gravity. Unfortunately, semiclassical gravity creates inconsistencies such as superluminal communication. Alternatives by authors such as Diósi, Martin, Penrose, and Wang often use the term 'stochastic' to set themselves apart from the standard semiclassical theory. These theories couple to fluctuations caused by for instance continuous spontaneous localization, hence the term 'stochastic'. This paper looks at stochastic gravity in the framework of a class of emergent or ontological quantum theories, such as those by Bohm, Cetto, and de Broglie. It is found that much or all of the trouble in connecting gravity with a microscopic system falls away, as Einstein's general relativity is free to react directly with the microscopic beables. The resulting continuous gravitational wave radiation by atomic and nuclear systems does not, in contrast to Einstein's speculation, cause catastrophic problems. The small amount of energy exchanged by gravitational waves may have measurable experimental consequences. A very recent experiment by Vinante et al. performed on a small cantilever at mK temperatures shows a surprising non-thermal noise component, the magnitude of which is consistent with the stochastic gravity coupling explored here.

2016 ◽  
Vol 14 (04) ◽  
pp. 1640017 ◽  
Author(s):  
Catalina Curceanu ◽  
Sergio Bartalucci ◽  
Angelo Bassi ◽  
Massimiliano Bazzi ◽  
Sergio Bertolucci ◽  
...  

By performing X-rays measurements in the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli exclusion principle (PEP). In the future, we aim to use a similar experimental technique to search for X-rays as a signature of the spontaneous collapse of the wave function predicted by continuous spontaneous localization theories. We present the achieved results of the VIP experiment and the future plans to gain two orders of magnitude in testing PEP with the recently VIP2 setup installed at Gran Sasso.


2021 ◽  
pp. 320-342
Author(s):  
Valia Allori

Quantum mechanics is a groundbreaking theory: it not only is extraordinarily empirically adequate but also is claimed to having shattered the classical paradigm of understanding the observer-observed distinction as well as the part-whole relation. This, together with other quantum features, has been taken to suggest that quantum theory can help one understand the mind-body relation in a unique way, in particular to solve the hard problem of consciousness along the lines of panpsychism. In this chapter, after having briefly presented panpsychism, Valia Allori discusses the main features of quantum theories and the way in which the main quantum theories of consciousness use them to account for conscious experience.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Gabriel R. Bengochea ◽  
Gabriel León ◽  
Philip Pearle ◽  
Daniel Sudarsky

AbstractIn this work we consider a wide variety of alternatives opened when applying the continuous spontaneous localization (CSL) dynamical collapse theory to the inflationary era. The definitive resolution of many of the issues discussed here will have to await, not only for a general relativistic CSL theory, but for a fully workable theory of quantum gravity. Our concern here is to explore these issues, and to warn against premature conclusions. This exploration includes: two different approaches to deal with quantum field theory and gravitation, the identification of the collapse-generating operator and the general nature and values of the parameters of the CSL theory. All the choices connected with these issues have the potential to dramatically alter the conclusions one can draw. We also argue that the incompatibilities found in a recent paper, between the CSL parameter values and the cosmic microwave background observational data, are associated with specific choices made for the extrapolation to the cosmological context of the CSL theory (as it is known to work in non-relativistic laboratory situations) which do not represent the most natural ones.


2016 ◽  
Vol 13 (Supp. 1) ◽  
pp. 1630011
Author(s):  
Valter Moretti

This paper collects and extends the lectures I gave at the “XXIV International Fall Workshop on Geometry and Physics” held in Zaragoza (Spain) during September 2015. Within these lectures I review the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas, mathematical tools and theorems also related to the representation of physical symmetries. The final step consists of an elementary introduction the so-called ([Formula: see text]-) algebraic formulation of quantum theories.


Sign in / Sign up

Export Citation Format

Share Document