The X-ray machine for the examination of quantum mechanics

2016 ◽  
Vol 14 (04) ◽  
pp. 1640017 ◽  
Author(s):  
Catalina Curceanu ◽  
Sergio Bartalucci ◽  
Angelo Bassi ◽  
Massimiliano Bazzi ◽  
Sergio Bertolucci ◽  
...  

By performing X-rays measurements in the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli exclusion principle (PEP). In the future, we aim to use a similar experimental technique to search for X-rays as a signature of the spontaneous collapse of the wave function predicted by continuous spontaneous localization theories. We present the achieved results of the VIP experiment and the future plans to gain two orders of magnitude in testing PEP with the recently VIP2 setup installed at Gran Sasso.

2017 ◽  
Vol 15 (08) ◽  
pp. 1740004 ◽  
Author(s):  
Catalina Curceanu ◽  
Diana Sirghi ◽  
Florin Sirghi ◽  
Sergio Bartalucci ◽  
Massimiliano Bazzi ◽  
...  

By performing X-ray measurements in the “cosmic silence” of the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli Exclusion Principle (PEP) for electrons. We present the achieved results of the VIP experiment and the ongoing VIP2 measurement aiming to gain two orders of magnitude improvement in testing PEP. X-ray emission can also be used to put strong constraints on the parameters of the Continuous Spontaneous Localization Model, which was introduced as a possible solution to the measurement problem in Quantum Mechanics. A Bayesian analysis of the data collected by IGEX will be presented, which allows to exclude a broad region of the parameter space which characterizes this model.


2014 ◽  
Vol 12 (07n08) ◽  
pp. 1560012
Author(s):  
Catalina Curceanu ◽  
Sergio Bartalucci ◽  
Angelo Bassi ◽  
Sergio Bertolucci ◽  
Carolina Berucci ◽  
...  

The Pauli exclusion principle (PEP) and, more generally, the spin-statistics connection, are at the very basis of our understanding of matter, life and Universe. The PEP spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Mechanics. It is, therefore, extremely important to test the limits of its validity. The Violation of the PEP (VIP) experiment established the best limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, and plans to go beyond the actual limit by upgrading the experimental apparatus. We discuss the possibility of using a similar experimental technique to search for X-rays as a signature of the spontaneous collapse of the wave function predicted by continuous spontaneous localization (CSL) theories.


2015 ◽  
Vol 631 ◽  
pp. 012068 ◽  
Author(s):  
C Curceanu ◽  
S Bartalucci ◽  
A Bassi ◽  
S Bertolucci ◽  
C Berucci ◽  
...  

2007 ◽  
Vol 05 (01n02) ◽  
pp. 299-304 ◽  
Author(s):  
S. BARTALUCCI ◽  
S. BERTOLUCCI ◽  
M. BRAGADIREANU ◽  
M. CARGNELLI ◽  
M. CATITTI ◽  
...  

The Pauli Exclusion Principle (PEP) represents one of the fundamental principles of the modern physics and our comprehension of the surrounding matter is based on it. Even if today there are no compelling reasons to doubt its validity, it still spurs a lively debate on its limits, as testified by the abundant contributions found in the literature and in topical conferences. We present a method of searching for possible small violations of PEP for electrons, through the search for "anomalous" X-ray transitions in copper atoms, produced by "fresh" electrons which can decay in a Pauli-forbidden transition to the 1s level, already occupied by two electrons. The VIP Experiment has the scientific goal to improve by four orders of magnitude the present limit on the probability of PEP violation for electrons, bringing it into the 10-30–10-31 region. Preliminary results, together with future plans, are presented.


2009 ◽  
Vol 24 (02n03) ◽  
pp. 506-510
Author(s):  
◽  
D. PIETREANU ◽  
S. BARTALUCCI ◽  
S. BERTOLUCCI ◽  
M. BRAGADIREANU ◽  
...  

The VIP (Violation of the Pauli Exclusion Principle) experiment is investigating one of the basic principles of modern physics, searching for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli forbidden transition. VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by three-four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10-29÷-30 region. The new experimental results, together with future plans, are presented.


2015 ◽  
Vol 46 (1) ◽  
pp. 147 ◽  
Author(s):  
K. Piscicchia ◽  
C. Curceanu ◽  
S. Bartalucci ◽  
A. Bassi ◽  
S. Bertolucci ◽  
...  

2018 ◽  
Vol 182 ◽  
pp. 02118 ◽  
Author(s):  
H. Shi ◽  
S. Bartalucci ◽  
M. Bazzi ◽  
S. Bertolucci ◽  
A.M. Bragadireanu ◽  
...  

In the VIP (VIolation of Pauli exclusion principle) and its follow-up VIP- 2 experiments at the Laboratori Nazionali del Gran Sasso, we test the validity of the Pauli Exclusion Principle, by searching for x-rays from copper atomic transitions from a 2p orbit electron to the ground state which is already occupied by two electrons. Such transitions are prohibited by the Pauli Exclusion Principle. The physics run of the VIP-2 experiment started in late 2016 and will collect data for three years. From the first data taking period of two months we have obtained a new limit better than the VIP result from three years of running. In this article we present the published first physics result from the VIP-2 experiment and discuss about the future perspectives.


Author(s):  
Thomas C Andersen

Some physicists surmise that gravity lies outside of quantum mechanics. Thus theories like the standard semiclassical theory of quantum to gravity coupling (that of Rosenfeld and Møller) are possible real models of interaction, rather than a mere approximation of a theory of quantum gravity. Unfortunately, semiclassical gravity creates inconsistencies such as superluminal communication. Alternatives by authors such as Diósi, Martin, Penrose, and Wang often use the term 'stochastic' to set themselves apart from the standard semiclassical theory. These theories couple to fluctuations caused by for instance continuous spontaneous localization, hence the term 'stochastic'. This paper looks at stochastic gravity in the framework of a class of emergent or ontological quantum theories, such as those by Bohm, Cetto, and de Broglie. It is found that much or all of the trouble in connecting gravity with a microscopic system falls away, as Einstein's general relativity is free to react directly with the microscopic beables. The resulting continuous gravitational wave radiation by atomic and nuclear systems does not, in contrast to Einstein's speculation, cause catastrophic problems. The small amount of energy exchanged by gravitational waves may have measurable experimental consequences. A very recent experiment by Vinante et al. performed on a small cantilever at mK temperatures shows a surprising non-thermal noise component, the magnitude of which is consistent with the stochastic gravity coupling explored here.


2007 ◽  
Vol 22 (02n03) ◽  
pp. 242-248 ◽  
Author(s):  
E. Milotti ◽  
S. Bartalucci ◽  
S. Bertolucci ◽  
M. Bragadireanu ◽  
M. Cargnelli ◽  
...  

The Pauli Exclusion Principle is a basic principle of Quantum Mechanics, and its validity has never been seriously challenged. However, given its fundamental standing, it is very important to check it as thoroughly as possible. Here we describe the VIP (VIolation of the Pauli exclusion principle) experiment, an improved version of the Ramberg and Snow experiment (E. Ramberg and G. Snow, Phys. Lett. B238, 438 (1990)); VIP has just completed the installation at the Gran Sasso underground laboratory, and aims to test the Pauli Exclusion Principle for electrons with unprecedented accuracy, down to β2/2 ≈ 10-30 - 10-31. We report preliminary experimental results and briefly discuss some of the implications of a possible violation.


Author(s):  
Eric Scerri

In chapter 7, the influence of the old quantum theory on the periodic system was considered. Although the development of this theory provided a way of reexpressing the periodic table in terms of the number of outer-shell electrons, it did not yield anything essentially new to the understanding of chemistry. Indeed, in several cases, chemists such as Irving Langmuir, J.D. Main Smith, and Charles Bury were able to go further than physicists in assigning electronic configurations, as described in chapter 8, because they were more familiar with the chemical properties of individual elements. Moreover, despite the rhetoric in favor of quantum mechanics that was propagated by Niels Bohr and others, the discovery that hafnium was a transition metal and not a rare earth was not made deductively from the quantum theory. It was essentially a chemical fact that was accommodated in terms of the quantum mechanical understanding of the periodic table. The old quantum theory was quantitatively impotent in the context of the periodic table since it was not possible to even set up the necessary equations to begin to obtain solutions for the atoms with more than one electron. An explanation could be given for the periodic table in terms of numbers of electrons in the outer shells of atoms, but generally only after the fact. But when it came to trying to predict quantitative aspects of atoms, such as the ground-state energy of the helium atom, the old quantum theory was quite hopeless. As one physicist stated, “We should not be surprised . . . even the astronomers have not yet satisfactorily solved the three-body problem in spite of efforts over the centuries.” A succession of the best minds in physics, including Hendrik Kramers, Werner Heisenberg, and Arnold Sommerfeld, made strenuous attempts to calculate the spectrum of helium but to no avail. It was only following the introduction of the Pauli exclusion principle and the development of the new quantum mechanics that Heisenberg succeeded where everyone else had failed.


Sign in / Sign up

Export Citation Format

Share Document