algebraic formulation
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 2)

Robotica ◽  
2021 ◽  
pp. 1-11
Author(s):  
Matteo Russo ◽  
Marco Ceccarelli

Abstract In study this paper, a geometric formulation is proposed to describe the workspace of parallel manipulators by using a recursive approach as an extension of volume generation for solids of revolution. In this approach, the workspace volume and boundary for each limb of the parallel manipulator is obtained with an algebraic formulation derived from the kinematic chain of the limb and the motion constraints on its joints. Then, the overall workspace of the mechanism can be determined as the intersection of the limb workspaces. The workspace of different kinematic chains is discussed and classified according to its external shape. An algebraic formulation for the inclusion of obstacles in the computation is also proposed. Both analytical models and numerical simulations are reported with their advantages and limitations. An example on a 3-SPR parallel mechanism illustrates the feasibility of the formulation and its efficiency.


Author(s):  
Giuseppe Marmo ◽  
Alessandro Zampini

In this paper, we review how an algebraic formulation for the dynamics of a physical system allows to describe a reduction procedure for both classical and quantum evolutions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yue Hao ◽  
Valeria Simoncini

AbstractWe explore algebraic strategies for numerically solving linear elliptic partial differential equations in polygonal domains. To discretize the polygon by means of structured meshes, we employ Schwarz-Christoffel conformal mappings, leading to a multiterm linear equation possibly including Hadamard products of some of the terms. This new algebraic formulation allows us to clearly distinguish between the role of the discretized operators and that of the domain meshing. Various algebraic strategies are discussed for the solution of the resulting matrix equation.


Author(s):  
V. V. Varlamov

An algebraic formulation of a quantum theory with a binary structure is considered.


2020 ◽  
Vol 35 (29) ◽  
pp. 2050239
Author(s):  
Marco A. S. Trindade ◽  
Sergio Floquet ◽  
J. David M. Vianna

We give an algebraic formulation based on Clifford algebras and algebraic spinors for quantum information. In this context, logic gates and concepts such as chirality, charge conjugation, parity and time reversal are introduced and explored in connection with states of qubits. Supersymmetry and M-superalgebra are also analyzed with our formalism. Specifically we use extensively the algebras [Formula: see text] and [Formula: see text] as well as tensor products of Clifford algebras.


2020 ◽  
Vol 8 (5) ◽  
pp. 369
Author(s):  
Luca Braidotti ◽  
Francesco Mauro

The need for decision support after a flooding casualty requires the development of fast and accurate progressive flooding simulation procedures. Here, a new quasi-static technique is presented, proposing a differential algebraic formulation capable to consider independently the flooding process in the internal rooms. The proposed method is efficient while simulating long flooding chains along rooms connected by similar size openings, a condition that likely occurs on large passenger ships. Moreover, the computational performances of the simulation procedure have been enhanced by adapting the time step to the progressive flooding pace. The adoption of an adaptive time step algorithm reduces significantly the calculation time. The novel procedure has been tested on the recommended benchmark cases for flooding simulations, highlighting the accuracy and flexibility of the proposed method.


10.37236/7587 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Kasra Alishahi ◽  
Mohaddeseh Rajaee ◽  
Ali Rajaei

In this paper, we introduce a notion of quantum discrepancy, a non-commutative version of combinatorial discrepancy which is defined for projection systems, i.e. finite sets of orthogonal projections, as non-commutative counterparts of set systems. We show that besides its natural algebraic formulation, quantum discrepancy, when restricted to set systems, has a probabilistic interpretation in terms of determinantal processes. Determinantal processes are a family of point processes with a rich algebraic structure.  A common feature of this family is the local repulsive behavior of points. Alishahi and Zamani (2015) exploit this repelling property to construct low-discrepancy point configurations on the sphere.  We give an upper bound for quantum discrepancy in terms of $N$, the dimension of the space, and $M$, the size of the projection system, which is tight in a wide range of parameters $N$ and $M$. Then we investigate the relation of these two kinds of discrepancies, i.e. combinatorial and quantum, when restricted to set systems, and bound them in terms of each other.


Sign in / Sign up

Export Citation Format

Share Document