The evolution of the harmonic oscillator in Quantum Mechanics with Spontaneous Localization

1989 ◽  
Vol 103 (5) ◽  
pp. 511-536 ◽  
Author(s):  
F. Benatti ◽  
T. Weber
1993 ◽  
Vol 08 (28) ◽  
pp. 2657-2670 ◽  
Author(s):  
K. N. ILINSKI ◽  
V. M. UZDIN

We describe q-deformation of the extended supersymmetry and construct q-extended supersymmetric Hamiltonian. For this purpose we formulate q-superspace formalism and construct q-supertransformation group. On this basis q-extended supersymmetric Lagrangian is built. The canonical quantization of this system is considered. The connection with multi-dimensional matrix representations of the parasupersymmetric quantum mechanics is discussed and q-extended supersymmetric harmonic oscillator is considered as a simplest example of the described constructions. We show that extended supersymmetric Hamiltonians obey not only extended SUSY but also the whole family of symmetries (q-extended supersymmetry) which is parametrized by continuous parameter q on the unit circle.


Author(s):  
Thomas C Andersen

Some physicists surmise that gravity lies outside of quantum mechanics. Thus theories like the standard semiclassical theory of quantum to gravity coupling (that of Rosenfeld and Møller) are possible real models of interaction, rather than a mere approximation of a theory of quantum gravity. Unfortunately, semiclassical gravity creates inconsistencies such as superluminal communication. Alternatives by authors such as Diósi, Martin, Penrose, and Wang often use the term 'stochastic' to set themselves apart from the standard semiclassical theory. These theories couple to fluctuations caused by for instance continuous spontaneous localization, hence the term 'stochastic'. This paper looks at stochastic gravity in the framework of a class of emergent or ontological quantum theories, such as those by Bohm, Cetto, and de Broglie. It is found that much or all of the trouble in connecting gravity with a microscopic system falls away, as Einstein's general relativity is free to react directly with the microscopic beables. The resulting continuous gravitational wave radiation by atomic and nuclear systems does not, in contrast to Einstein's speculation, cause catastrophic problems. The small amount of energy exchanged by gravitational waves may have measurable experimental consequences. A very recent experiment by Vinante et al. performed on a small cantilever at mK temperatures shows a surprising non-thermal noise component, the magnitude of which is consistent with the stochastic gravity coupling explored here.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


2007 ◽  
Vol 22 (35) ◽  
pp. 2675-2687 ◽  
Author(s):  
LUIS F. BARRAGÁN-GIL ◽  
ABEL CAMACHO

In this work the conditions appearing in the so-called WKB approximation formalism of quantum mechanics are analyzed. It is shown that, in general, a careful definition of an approximation method requires the introduction of two length parameters, one of them always considered in the textbooks on quantum mechanics, whereas the other is usually neglected. Afterwards we define a particular family of potentials and prove, resorting to the aforementioned length parameters, that we may find an energy which is a lower bound to the ground energy of the system. The idea is applied to the case of a harmonic oscillator and also to a particle freely falling in a homogeneous gravitational field, and in both cases the consistency of our method is corroborated. This approach, together with the so-called Rayleigh–Ritz formalism, allows us to define an energy interval in which the ground energy of any potential, belonging to our family, must lie.


2021 ◽  
pp. 207-219
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

In Chapter 2 we presented the method of canonical quantisation which yields a quantum theory if we know the corresponding classical theory. In this chapter we argue that this method is not unique and, furthermore, it has several drawbacks. In particular, its application to constrained systems is often problematic. We present Feynman’s path integral quantisation method and derive from it Schroödinger’s equation. We follow Feynman’s original approach and we present, in addition, more recent experimental results which support the basic assumptions. We establish the equivalence between canonical and path integral quantisation of the harmonic oscillator.


2020 ◽  
Vol 35 (32) ◽  
pp. 2050208
Author(s):  
William H. Pannell

The relation between certain Hamiltonians, known as dual, or partner Hamiltonians, under the transformation [Formula: see text] has long been used as a method of simplifying spectral problems in quantum mechanics. This paper seeks to examine this further by expressing such Hamiltonians in terms of the generators of sl(2) algebra, which provides another method of solving spectral problems. It appears that doing so greatly restricts the set of allowable potentials, with the only nontrivial potentials allowed being the Coulomb [Formula: see text] potential and the harmonic oscillator [Formula: see text] potential, for both of which the sl(2) expression is already known. It also appears that, by utilizing both the partner potential transformation and the formalism of the Lie-algebraic construction of quantum mechanics, it may be possible to construct part of a Hamiltonian’s spectrum from the quasi-solvability of its partner Hamiltonian.


1996 ◽  
Vol 11 (19) ◽  
pp. 1563-1567 ◽  
Author(s):  
BORIS F. SAMSONOV

The supersymmetric quantum mechanical model based on higher-derivative supercharge operators possessing unbroken supersymmetry and discrete energies below the vacuum state energy is described. As an example harmonic oscillator potential is considered.


Sign in / Sign up

Export Citation Format

Share Document