scholarly journals Effect of Reflector Geometry in the Annual Received Radiation of Low Concentration Photovoltaic Systems

Author(s):  
João Paulo N. Torres ◽  
Carlos A. F. Fernandes ◽  
João Gomes ◽  
Bonfiglio Luc ◽  
Carine Giovinazzo ◽  
...  

Solar concentrator photovoltaic collectors are able to deliver energy at higher temperatures for the same irradiances, since they are related to smaller areas for which heat losses occur. However, to ensure the system reliability, adequate collector geometry and appropriate choice of the materials used for all their components will be crucial. The present study focuses on the re-design of the C-PV collector reflector currently produced by the Swedish company Solarus AB, together with a comparative analysis based on the annual assessment of the solar irradiance in the collector. An open-source ray tracing code (Soltrace) is used to accomplish the modelling of optical systems in concentrating solar power applications. Symmetric parabolic reflector configurations are seen to improve the PV system performance when compared to the conventional structures currently used by Solarus. The parabolic geometries, using either symmetrically or asymmetrically placed receivers inside the collector, achieve both the performance and cost-effectiveness objectives: for almost the same area or costs, the new proposals for the PV system may be in some cases 70 % more effective as far as energy output is concerned.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1878 ◽  
Author(s):  
João Torres ◽  
Carlos Fernandes ◽  
João Gomes ◽  
Bonfiglio Luc ◽  
Giovinazzo Carine ◽  
...  

Solar concentrator photovoltaic collectors are able to deliver energy at higher temperatures for the same irradiances, since they are related to smaller areas for which heat losses occur. However, to ensure the system reliability, adequate collector geometry and appropriate choice of the materials used in these systems will be crucial. The present work focuses on the re-design of the Concentrating Photovoltaic system (C-PV) collector reflector presently manufactured by the company Solarus, together with an analysis based on the annual assessment of the solar irradiance in the collector. An open-source ray tracing code (Soltrace) is used to accomplish the modelling of optical systems in concentrating solar power applications. Symmetric parabolic reflector configurations are seen to improve the PV system performance when compared to the conventional structures currently used by Solarus. The parabolic geometries, using either symmetrically or asymmetrically placed receivers inside the collector, accomplished both the performance and cost-effectiveness goals: for almost the same area or costs, the new proposals for the PV system may be in some cases 70% more effective as far as energy output is concerned.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Reza Pourhassan ◽  
Sadigh Raissi ◽  
Arash Apornak

PurposeIn some environments, the failure rate of a system depends not only on time but also on the system condition, such as vibrational level, efficiency and the number of random shocks, each of which causes failure. In this situation, systems can keep working, though they fail gradually. So, the purpose of this paper is modeling multi-state system reliability analysis in capacitor bank under fatal and nonfatal shocks by a simulation approach.Design/methodology/approachIn some situations, there may be several levels of failure where the system performance diminishes gradually. However, if the level of failure is beyond a certain threshold, the system may stop working. Transition from one faulty stage to the next can lead the system to more rapid degradation. Thus, in failure analysis, the authors need to consider the transition rate from these stages in order to model the failure process.FindingsThis study aims to perform multi-state system reliability analysis in energy storage facilities of SAIPA Corporation. This is performed to extract a predictive model for failure behavior as well as to analyze the effect of shocks on deterioration. The results indicate that the reliability of the system improved by 6%.Originality/valueThe results of this study can provide more confidence for critical system designers who are engaged on the proper system performance beyond economic design.


2019 ◽  
Vol 8 (3) ◽  
pp. 8441-8444 ◽  

The performance of 100 kWp roof-top grid-connected PV system was evaluated. The plant was installed at PGDM building in Sharda University, Greater Noida in northern India. The plant was monitored from March 2018 to February 2019. Performance parameters such as system efficiency, performance ratio, capacity utilization factor, and degradation rate were obtained. The plant performance result was compared with the estimated results obtained from SAM and PVsyst software. The total annual energy output was found to be 16426 kWh. The annual average system efficiency and capacity utilization factor of the plant was found to be 15.62 % and 14.72 % respectively. The annual performance ratio and annual degradation rate were found to be 76% and 1.28%/year respectively. The annual performance ratio obtained from SAM and PVsyst was found to be 78% and 82% respectively. It was noticed that the measured performance ratio was highly relative with the one obtained from SAM software.


Sign in / Sign up

Export Citation Format

Share Document