Renewables Wind Water and Solar
Latest Publications


TOTAL DOCUMENTS

62
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

Published By Springer (Biomed Central Ltd.)

2198-994x, 2198-994x

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Abraham Hizkiel Nebey

AbstractIntegrating different energy resources, like solar PV, wind, and hydro is used to ensure reliable power to the rural community loads. Hybrid power system offers sufficient power supply for the rural villages by providing alternative supply for intermittent nature of renewable energy resource. Hence, intermittency of renewable energy resources is a challenge to electrify the rural community in a sustainable manner with the above sources. Thus, efficient resources management is a reasonable choice for intermittent renewable energy resources. The majority of rural villages in Ethiopia are suffering from lack of electricity. This causes deforestation, travel for long distance to fetch water, and no good social services, like clinic and schools, sufficiently. Therefore, the objective of this study was to maximize reliability of power supply by renewable energy sources. Data on wind speed and solar radiation are obtained from the NASA surface meteorological agency. While hydro data are obtained from physical measurements. Different configuration options are considered by Homer software to find the optimal configuration of hybrid system. The optimal configuration system is selected and hybrid components are sized. The optimal hybrid system consists of solar PV, wind, and hydro to supply a community load with a share of 13%, 52%, and 35% respectively. The fuzzy logic controller is designed to manage the intermittent nature of energies. Hence, the demand and energy sources are unpredictable; intelligent control system is important to manage the system accordingly. The control system is designed in MATALAB software. The result obtained from resource combination shows demand and supply are balanced. From the Twelve probabilistic combinations of demand and energy sources, one of the combinations shows that when 7.5 kW is demanded, the power generated/output from hybrid system is 10 kW which is greater than demand. To satisfy 7.5 kW demand control system takes 4.25 kW, 2.75 kW, and 1.08 kW share from wind, hydro, and solar sources respectively. The fuzzy logic control system is designed, to monitor the resource availability and load demand. This controller was managing the demand and the available resources according to the rule.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mahmoud Laajimi ◽  
Yun Ii Go

AbstractLarge-scale solar is a non-reversible trend in the energy mix of Malaysia. Due to the mismatch between the peak of solar energy generation and the peak demand, energy storage projects are essential and crucial to optimize the use of this renewable resource. Although the technical and environmental benefits of such transition have been examined, the profitability of energy storage systems combined with large-scale solar PV has not been studied in Malaysia. This project aims to determine the most profitable business model of power systems, in terms of PV installed capacity, and energy storage capacity, and power system components. A comparative study has been done to compare the economic outcomes from different types of projects, with different scales and multiple configurations of large-scale solar PV combined with energy storage. The lowest values of LCOE are guaranteed with energy storage output to LSS output ratio, A = 5%. In this case, 30-MW projects have the cheapest electricity, equal to RM 0.2484/kWh. On the other hand, increasing the energy storage output to LSS output ratio, A to 60% results in the increase of LCOE, exceeding RM 0.47/kWh. On the economical side, with a difference of 0.06 kWh/m2/day for the analysis carried out in Pahang and Perak, the difference in net present worth is more than 7.5% of the net present cost. The difference between the two locations is comparatively higher for 50-MW projects. It is equal to RM 11.67 Million for A = 60%, while it is equal to RM 13.5 Million with A = 5%. Due to the energy prices in Malaysia, the projects that include large-scale solar only are more profitable technically and financially than those including large-scale solar and energy storage. It is found that adding storage to a large-scale solar project is more profitable technically and financially with greater large-scale solar capacities and smaller storage capacities. Nevertheless, with the current energy prices in Malaysia, projects that include only energy storage are not financially profitable. This study determined the parameters that affect the profitability of large-scale solar energy projects and energy storage projects, and the configurations that maximize financial profits. The findings of this study are useful for the future regulations that intend to enhance the deployment of large-scale solar PV and energy storage in Malaysia.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yassine Charabi ◽  
Sabah Abdul-Wahab ◽  
Hamidreza Ziaiefar

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammed Yunus ◽  
Mohammad S. Alsoufi

AbstractSolar collector (SC) technology has proved promising applications in heating, desalination, refrigeration of water, etc. Thermal performance (TP) of Heat Pipe (HP) improves by combining the various profiled absorber plate with a flat-plate collector. The objective is to study HP attributes' effect (heat inputs, pipe inclinations, and mass flow rates of water) with various profiles of absorber plates in a flat-plate SC on the TP. Semi-circular HP combining with the flat, V-grooved, and V-troughed absorber plates in a flat-plate collector improved TP. They are heat output, thermal resistance, and overall efficiency explored experimentally by adapting the response surface method's (RSM) central composite design. A major impacting applicant factor was heat input for improving TPs, and correlation models were generated from ANOVA. The optimal input attributes are obtained to minimize thermal resistance and maximize heat output and overall efficiency from RSM and desirability function. Confirmation test was conducted using optimal settings and their corresponding estimated values of the TP attributes to compare with the experimental results shown very close agreement between them established.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Inês Melo ◽  
João Paulo Neto Torres ◽  
Carlos Alberto Ferreira Fernandes ◽  
Ricardo A. Marques Lameirinhas

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shahryar Khalique Ahmad ◽  
Faisal Hossain

Sign in / Sign up

Export Citation Format

Share Document