scholarly journals Every Entangled Stuff Has Its Own Avatar

Author(s):  
Mario Mastriani

During the last century, entanglement was the bone of contention between the two main pillars of Physics: General Relativity (GR) and Quantum Mechanics (QM). This began in 1935 with the Einstein-Podolsky-Rosen paradox (EPR paradox) which concluded that although Quantum Mechanics is not wrong, it is an incomplete theory to represent physical reality. In this paper it is demonstrated that some byproducts resulting from entanglement and which we will call avatars act as a hinge that link both theories making the completeness of QM clear. Moreover, a thorough analysis of the non-locality of this effect will be carried out. Besides, it is demonstrated that entanglement is an instantaneous phenomenon and that it does not require the use of a superluminal signaling for this purpose. Finally, the avatars will also appear in each wormhole resulting from an entanglement process (WREP) demonstrating that they are traversable with an equivalent path of null length which can be crossed in a null time with all that this implies in Quantum Communications.

1974 ◽  
Vol 29 (4) ◽  
pp. 539-548 ◽  
Author(s):  
P. Mittelstaedt

The EPR experiment is analysed in terms of ordinary quantum mechanics and shown to be compatible with the orthodox interpretation of this theory. There is no need to refer to Bohrs resolution of the EPR paradox, nor is it necessary to assume any further unusual properties of the quantum physical reality. In particular, it is shown that the EPR experiment does not contradict the fact that incommensurable properties cannot be objectivized simultaneously in a quantum mechanical system, and that the measuring process can be understood in terms of quantum theory as an interaction of the measuring apparatus and the object system. From these results it follows that there is no reason to search for modifications of the quantum theory which might be more convenient for a realistic interpretation of the EPR experiment. Furthermore, the EPR experiment cannot be used as a motivation for introducing hidden variables into the quantum theory. Experimental investigations which try to test quantum mechanics in respect to the possibility of introducing local hidden variables can therefore not be justified by the EPR paradox.


Author(s):  
Ghenadie N. Mardari

The EPR paradox is known as an interpretive problem, as well as a technical discovery in quantum mechanics. It defined the basic features of two-quantum entanglement, as needed to study the relationships between two non-commuting variables. In contrast, four variables are observed in a typical Bell experiment. This is no longer the same problem. The full complexity of this process can only be captured by the analysis of four-quantum entanglement. Indeed, a new paradox emerges in this context, with straightforward consequences. Either quantum behavior is capable of signaling non-locality, or it is local. Both alternatives appear to contradict existing knowledge. Still, one of them has to be true, and the final answer can be obtained conclusively with a four-quantum Bell experiment.


2002 ◽  
Vol 17 (15n17) ◽  
pp. 1097-1106 ◽  
Author(s):  
JEEVA ANANDAN

The conflict between the locality of general relativity, reflected in its space-time description, and the non-locality of quantum mechanics, contained in its Hilbert space description, is discussed. Gauge covariant non-local observables that depend on gauge fields and gravity as well as the wave function are used in order to try to understand and minimize this conflict within the frame-work of these two theories. Applications are made to the Aharonov-Bohm effect and its generalizations to non Abelian gauge fields and gravity.


2020 ◽  
Vol 244 ◽  
pp. 01010
Author(s):  
Hervé Zwirn

The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve (or to dissolve) it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. In this paper, I defend a new position, the “Convivial Solipsism”, according to which the outcome that is observed is relative to the observer, different but in close parallel to the Everett’s interpretation and sharing also some similarities with Rovelli’s relational interpretation and Quantum Bayesianism. I also show how “Convivial Solipsism” can help getting a new standpoint about the EPR paradox providing a way out of the seemingly unavoidable non-locality of quantum mechanics.


Author(s):  
Craig Callender

Two of quantum mechanics’ more famed and spooky features have been invoked in defending the idea that quantum time is congenial to manifest time. Quantum non-locality is said by some to make a preferred foliation of spacetime necessary, and the collapse of the quantum wavefunction is held to vindicate temporal becoming. Although many philosophers and physicists seek relief from relativity’s assault on time in quantum theory, assistance is not so easily found.


Author(s):  
Steven E. Vigdor

Chapter 7 describes the fundamental role of randomness in quantum mechanics, in generating the first biomolecules, and in biological evolution. Experiments testing the Einstein–Podolsky–Rosen paradox have demonstrated, via Bell’s inequalities, that no local hidden variable theory can provide a viable alternative to quantum mechanics, with its fundamental randomness built in. Randomness presumably plays an equally important role in the chemical assembly of a wide array of polymer molecules to be sampled for their ability to store genetic information and self-replicate, fueling the sort of abiogenesis assumed in the RNA world hypothesis of life’s beginnings. Evidence for random mutations in biological evolution, microevolution of both bacteria and antibodies and macroevolution of the species, is briefly reviewed. The importance of natural selection in guiding the adaptation of species to changing environments is emphasized. A speculative role of cosmological natural selection for black-hole fecundity in the evolution of universes is discussed.


Philosophies ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 40
Author(s):  
Said Mikki

The goal of this article is to bring into wider attention the often neglected important work by Bertrand Russell on the philosophy of nature and the foundations of physics, published in the year 1927. It is suggested that the idea of what could be named Russell space, introduced in Part III of that book, may be viewed as more fundamental than many other types of spaces since the highly abstract nature of the topological ordinal space proposed by Russell there would incorporate into its very fabric the emergent nature of spacetime by deploying event assemblages, but not spacetime or particles, as the fundamental building blocks of the world. We also point out the curious historical fact that the book The Analysis of Matter can be chronologically considered the earliest book-length generic attempt to reflect on the relation between quantum mechanics, just emerging by that time, and general relativity.


Nature ◽  
1935 ◽  
Vol 136 (3428) ◽  
pp. 65-65 ◽  
Author(s):  
N. BOHR

Sign in / Sign up

Export Citation Format

Share Document