scholarly journals Analysis of Different Statistical Models in Probabilistic Joint Estimation of Porosity and Litho-Fluid Facies from Acoustic Impedance Values

Author(s):  
Mattia Aleardi

We discuss the influence played by different statistical models in the prediction of porosity and litho-fluid facies from logged and post-stack inverted acoustic impedance (Ip) values. We compare the inversion and classification results obtained under three different a-priori statistical assumptions: an analytical Gaussian distribution, an analytical Gaussian-mixture model and a non-parametric mixture distribution. The first model assumes Gaussian distributed porosity and Ip values, thus neglecting their facies-dependent behaviour caused by different lithologic and saturation conditions. Differently, the other two statistical models relate each component of the mixture to a specific litho-fluid facies, so that the facies-dependency of porosity and Ip values is taken into account. Blind well tests are used to validate the final predictions, whereas the analysis of the maximum-a-posteriori (MAP) solutions, the coverage ratio and the contingency analysis tools are used to quantitatively compare the inversion outcomes. This work points out that the correct choice of the statistical petrophysical model could be crucial in reservoir characterization studies. Indeed, for the investigated zone it turns out that the simple Gaussian model constitutes an oversimplified assumption, while the two mixture models provide more accurate results, although the non-parametric one yields slightly superior predictions with respect to the Gaussian-mixture assumption.

Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 388 ◽  
Author(s):  
Mattia Aleardi

We discuss the influence of different statistical models in the prediction of porosity and litho-fluid facies from logged and inverted acoustic impedance (Ip) values. We compare the inversion and classification results that were obtained under three different statistical a-priori assumptions: an analytical Gaussian distribution, an analytical Gaussian-mixture model, and a non-parametric mixtu re distribution. The first model assumes Gaussian distributed porosity and Ip values, thus neglecting their facies-dependent behaviour related to different lithologic and saturation conditions. Differently, the other two statistical models relate each component of the mixture to a specific litho-fluid facies, so that the facies-dependency of porosity and Ip values is taken into account. Blind well tests are used to validate the final predictions, whereas the analysis of the maximum-a-posteriori (MAP) solutions, the coverage ratio, and the contingency analysis tools are used to quantitatively compare the inversion outcomes. This work points out that the correct choice of the statistical petrophysical model could be crucial in reservoir characterization studies. Indeed, for the investigated zone, it turns out that the simple Gaussian model constitutes an oversimplified assumption, while the two mixture models provide more accurate estimates, although the non-parametric one yields slightly superior predictions with respect to the Gaussian-mixture assumption.


2008 ◽  
Author(s):  
Fariz Fahmi ◽  
Yue Choong Lye ◽  
Azlina Ahmad Termizi ◽  
Dave Walley and Aniza Yaakob

Author(s):  
Amir Abbas Babasafari ◽  
Shiba Rezaei ◽  
Ahmed Mohamed Ahmed Salim ◽  
Sayed Hesammoddin Kazemeini ◽  
Deva Prasad Ghosh

Abstract For estimation of petrophysical properties in industry, we are looking for a methodology which results in more accurate outcome and also can be validated by means of some quality control steps. To achieve that, an application of petrophysical seismic inversion for reservoir properties estimation is proposed. The main objective of this approach is to reduce uncertainty in reservoir characterization by incorporating well log and seismic data in an optimal manner. We use nonlinear optimization algorithms in the inversion workflow to estimate reservoir properties away from the wells. The method is applied at well location by fitting nonlinear experimental relations on the petroelastic cross-plot, e.g., porosity versus acoustic impedance for each lithofacies class separately. Once a significant match between the measured and the predicted reservoir property is attained in the inversion workflow, the petrophysical seismic inversion based on lithofacies classification is applied to the inverted elastic property, i.e., acoustic impedance or Vp/Vs ratio derived from seismic elastic inversion to predict the reservoir properties between the wells. Comparison with the neural network method demonstrated this application of petrophysical seismic inversion to be competitive and reliable.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. MR213-MR233 ◽  
Author(s):  
Muhammad Atif Nawaz ◽  
Andrew Curtis ◽  
Mohammad Sadegh Shahraeeni ◽  
Constantin Gerea

Seismic attributes (derived quantities) such as P-wave and S-wave impedances and P-wave to S-wave velocity ratios may be used to classify subsurface volume of rock into geologic facies (distinct lithology-fluid classes) using pattern recognition methods. Seismic attributes may also be used to estimate subsurface petrophysical rock properties such as porosity, mineral composition, and pore-fluid saturations. Both of these estimation processes are conventionally carried out independent of each other and involve considerable uncertainties, which may be reduced significantly by a joint estimation process. We have developed an efficient probabilistic inversion method for joint estimation of geologic facies and petrophysical rock properties. Seismic attributes and petrophysical properties are jointly modeled using a Gaussian mixture distribution whose parameters are initialized by unsupervised learning using well-log data. Rock-physics models may be used in our method to augment the training data if the existing well data are limited; however, this is not required if sufficient well data are available. The inverse problem is solved using the Bayesian paradigm that models uncertainties in the form of probability distributions. Probabilistic inference is performed using variational optimization, which is a computationally efficient deterministic alternative to the commonly used sampling-based stochastic inference methods. With the help of a real data application from the North Sea, we find that our method is computationally efficient, honors expected spatial correlations of geologic facies, allows reliable detection of convergence, and provides full probabilistic results without stochastic sampling of the posterior distribution.


2019 ◽  
Vol 7 (1) ◽  
pp. 1-26
Author(s):  
Run Zhang ◽  
Yongbin Wang

With the focus of the main problems in no-reference natural image quality assessment (NR-IQA), the researchers propose a more universal, efficient and integrated resolution based on visual biological cognitive mechanism. First, the authors bring up an inspiring visual cognitive computing model (IVCCM) on the basis of visual heuristic principles. Second, the authors put forward an asymmetric generalized gaussian mixture distribution model (AGGMD), and the model can describe the probability distribution density of the images more precisely. Third, the authors extract the quality-aware multiscale local invariant features (QAMLIF) statistic and perceptive from natural images and form quality-aware uniform features descriptors (QAUFD) based on clustering and encoding the visual quality features. Fourth, the authors build topic semantic model and realize the resolution with Bayesian inference with IVCCM, AGGDM and QAUFD to implement NR-IQA. Theoretical research and experimental results show that the proposed resolution perform better with biological cognitive mechanism.


Sign in / Sign up

Export Citation Format

Share Document