scholarly journals Generalization of Nambu-Hamilton Equation and Extension of Nambu-Poisson Bracket to Superspace

Author(s):  
Viktor Abramov

We propose a generalization of Nambu-Hamilton equation in superspace $\mathbb R^{3|2}$ with three real and two Grassmann coordinates. We construct the even degree vector field in the superspace $\mathbb R^{3|2}$ by means of the right-hand sides of proposed generalization of Nambu-Hamilton equation and show that this vector field is divergenceless in superspace. Then we show that our generalization of Nambu-Hamilton equation in superspace leads to family of ternary brackets of even degree functions defined with the help of Berezinian. This family of ternary brackets is parametrized by the infinite dimensional group of invertible second order matrices, whose entries are differentiable functions on the space $\mathbb R^{3}$. We study the structure of ternary bracket in a more general case of a superspace $\mathbb R^{n|2}$ with $n$ real and two Grassmann coordinates and show that for any invertible second order functional matrix it splits into the sum of two ternary brackets, where one is usual Nambu-Poisson bracket, extended in a natural way to even degree functions in a superspace $\mathbb R^{n|2}$, and the second is a new ternary bracket, which we call $\Psi$-bracket, where $\Psi$ can be identified with invertible second order functional matrix. We prove that ternary $\Psi$-bracket as well as the whole ternary bracket (the sum of $\Psi$-bracket with usual Nambu-Poisson bracket) is totally skew-symmetric, satisfies the Leibniz rule and the Filippov-Jacobi identity (Fundamental Identity).

Universe ◽  
2018 ◽  
Vol 4 (10) ◽  
pp. 106 ◽  
Author(s):  
Viktor Abramov

We propose a generalization of the Nambu–Hamilton equation in superspace R 3 | 2 with three real and two Grassmann coordinates. We construct the even degree vector field in the superspace R 3 | 2 by means of the right-hand sides of the proposed generalization of the Nambu–Hamilton equation and show that this vector field is divergenceless in superspace. Then we show that our generalization of the Nambu–Hamilton equation in superspace leads to a family of ternary brackets of even degree functions defined with the help of a Berezinian. This family of ternary brackets is parametrized by the infinite dimensional group of invertible second order matrices, whose entries are differentiable functions on the space R 3 . We study the structure of the ternary bracket in a more general case of a superspace R n | 2 with n real and two Grassmann coordinates and show that for any invertible second order functional matrix it splits into the sum of two ternary brackets, where one is the usual Nambu–Poisson bracket, extended in a natural way to even degree functions in a superspace R n | 2 , and the second is a new ternary bracket, which we call the Ψ -bracket, where Ψ can be identified with an invertible second order functional matrix. We prove that the ternary Ψ -bracket as well as the whole ternary bracket (the sum of the Ψ -bracket with the usual Nambu–Poisson bracket) is totally skew-symmetric, and satisfies the Leibniz rule and the Filippov–Jacobi identity ( Fundamental Identity).


2018 ◽  
Vol 15 (11) ◽  
pp. 1850190 ◽  
Author(s):  
Viktor Abramov

We propose an extension of [Formula: see text]-ary Nambu–Poisson bracket to superspace [Formula: see text] and construct by means of superdeterminant a family of Nambu–Poisson algebras of even degree functions, where the parameter of this family is an invertible transformation of Grassmann coordinates in superspace [Formula: see text]. We prove in the case of the superspaces [Formula: see text] and [Formula: see text] that our [Formula: see text]-ary bracket, defined with the help of superdeterminant, satisfies the conditions for [Formula: see text]-ary Nambu–Poisson bracket, i.e. it is totally skew-symmetric and it satisfies the Leibniz rule and the Filippov–Jacobi identity (fundamental identity). We study the structure of [Formula: see text]-ary bracket defined with the help of superdeterminant in the case of superspace [Formula: see text] and show that it is the sum of usual [Formula: see text]-ary Nambu–Poisson bracket and a new [Formula: see text]-ary bracket, which we call [Formula: see text]-bracket, where [Formula: see text] is the product of two odd degree smooth functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Andrew James Bruce

We construct a nonskew symmetric version of a Poisson bracket on the algebra of smooth functions on an odd Jacobi supermanifold. We refer to such Poisson-like brackets as Loday-Poisson brackets. We examine the relations between the Hamiltonian vector fields with respect to both the odd Jacobi structure and the Loday-Poisson structure. Furthermore, we show that the Loday-Poisson bracket satisfies the Leibniz rule over the noncommutative product derived from the homological vector field.


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


2004 ◽  
Vol 2004 (10) ◽  
pp. 487-534 ◽  
Author(s):  
M. B. Sheftel

We study point and higher symmetries of systems of the hydrodynamic type with and without an explicit dependence ont,x. We consider such systems which satisfy the existence conditions for an infinite-dimensional group of hydrodynamic symmetries which implies linearizing transformations for these systems. Under additional restrictions on the systems, we obtain recursion operators for symmetries and use them to construct infinite discrete sets of exact solutions of the studied equations. We find the interrelation between higher symmetries and recursion operators. Two-component systems are studied in more detail thann-component systems. As a special case, we consider Hamiltonian and semi-Hamiltonian systems of Tsarëv.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550011 ◽  
Author(s):  
Partha Guha

Recently, Kupershmidt [38] presented a Lie algebraic derivation of a new sixth-order wave equation, which was proposed by Karasu-Kalkani et al. [31]. In this paper, we demonstrate that Kupershmidt's method can be interpreted as an infinite-dimensional analogue of the Euler–Poincaré–Suslov (EPS) formulation. In a finite-dimensional case, we modify Kupershmidt's deformation of the Euler top equation to obtain the standard EPS construction on SO(3). We extend Kupershmidt's infinite-dimensional construction to construct a nonholonomic deformation of a wide class of coupled KdV equations, where all these equations follow from the Euler–Poincaré–Suslov flows of the right invariant L2 metric on the semidirect product group [Formula: see text], where Diff (S1) is the group of orientation preserving diffeomorphisms on a circle. We generalize our construction to the two-component Camassa–Holm equation. We also give a derivation of a nonholonomic deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation and this method can be interpreted as an infinite-dimensional supersymmetric analogue of the Euler–Poincaré–Suslov (EPS) method.


Author(s):  
Адам Дамирович Ушхо

Доказывается, что система дифференциальных уравнений, правые части которой представляют собой полиномы второй степени, не имеет предельных циклов, если в ограниченной части фазовой плоскости она имеет только два состояния равновесия и при этом они являются состояниями равновесия второй группы. It is proved that a system of differential equations, the right-hand sides of which are second-order polynomials, has no limit cycles if it has only two equilibrium states in the bounded part of the phase plane, and they are the equilibrium states of the second group.


Author(s):  
V.Sh. Roitenberg ◽  

In this paper, autonomous differential equations of the second order are considered, the right-hand sides of which are polynomials of degree n with respect to the first derivative with periodic continuously differentiable coefficients, and the corresponding vector fields on the cylindrical phase space. The free term and the leading coefficient of the polynomial is assumed not to vanish, which is equivalent to the absence of singular points of the vector field. Rough equations are considered for which the topological structure of the phase portrait does not change under small perturbations in the class of equations under consideration. It is proved that the equation is rough if and only if all its closed trajectories are hyperbolic. Rough equations form an open and everywhere dense set in the space of the equations under consideration. It is shown that for n > 4 an equation of degree n can have arbitrarily many limit cycles. For n = 4, the possible number of limit cycles is determined in the case when the free term and the leading coefficient of the equation have opposite signs.


2021 ◽  
Vol 30 (4) ◽  
pp. 372-381
Author(s):  
Juraj Odorčák ◽  

The article presents a critique of the commonly held assumption about the practical advantage of endurantism over perdurantism regarding the problem of future-directed self-concern of a person. The future-directed self-concern of a person crucially depends on the possibility of the right differentiation of diverging futures of distinct persons, therefore any theory of persistence that does not entail a special nonbranching relation of a person to only their future self seems to be counterintuitive or unrealistic for practical purposes of personal persistence. I argue that this pragmatic rationale about future-directed self-concern is equally challenging for both theories of persistence. Moreover, I indicate, that both of these theories fall and stand on the practical feasibility of hidden ontological presuppositions about specific second-order notions of concerns of persons for their future.


Sign in / Sign up

Export Citation Format

Share Document