scholarly journals Hardware in the Loop Real-Time Simulation for Heating Systems: Model Validation and Dynamics Analysis

Author(s):  
Wessam El-Baz ◽  
Lukas Mayerhofer ◽  
Peter Tzscheutschler ◽  
Ulrich Wagner

Heating systems such as heat pump and combined heat and power cycle systems (CHP) are representing a key component in the future smart grid. Their capability to couple the electricity and heat sector promises a massive potential to the energy transition. Hence, these systems are continuously studied numerical and experimental to quantify their potential and develop optimal control methods. Although numerical simulations provide time and cost-effective solution for system development and optimization, they are exposed to several uncertainties. Hardware in the loop (HiL) system enables system validation and evaluation under different real-life dynamic constraints and boundary conditions. In this paper, a HiL system of heat pump testbed is presented. This system is used to present two case studies. In the first case, the conventional heat pump testbed operation method is compared to the HiL operation method. Energetic and dynamic analyses are performed to quantify the added value of the HiL and its necessity for dynamics analysis. The second case, the HiL testbed is used to validate the heat pump operation in a single family house participating in a local energy market. It enables not only the dynamics of the heat pump and the space heating circuit to be validated but also the building room temperature. The energetic analysis indicated a deviation of 2% and 5% for heat generation and electricity consumption of the heat pump, respectively. The model dynamics emphasized the model capability to present the dynamics of a real system with a temporal distortion of 3%.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3159 ◽  
Author(s):  
Wessam El-Baz ◽  
Lukas Mayerhofer ◽  
Peter Tzscheutschler ◽  
Ulrich Wagner

Heating systems such as heat pumps and combined heat and power cycle systems (CHP) represent a key component in the future smart grid. Their capability to couple the electricity and heat sector promises a massive contribution to the energy transition. Hence, these systems are continuously studied numerically and experimentally to quantify their potential and develop optimal control methods. Although numerical simulations provide time and cost-effective solutions for system development and optimization, they are exposed to several uncertainties. Hardware in the loop (HiL) approaches enable system validation and evaluation under different real-life dynamic constraints and boundary conditions. In this paper, a HiL system of a heat pump testbed is presented. It is used to present two case studies. In the first case, the conventional heat pump testbed operation method is compared to the HiL operation method. Energetic and dynamic analyses are performed to quantify the added value of the HiL and its necessity for dynamics analysis. In the second case, the HiL testbed is used to validate a model of a single family house with a heat pump participating in a local energy market. The energetic analysis indicates a deviation of 2% and 5% for heat generation and electricity consumption of the heat pump model, respectively. The model dynamics emphasized its capability to present the dynamics of a real system with a temporal distortion of 3%.


2018 ◽  
Vol 8 (10) ◽  
pp. 1973 ◽  
Author(s):  
Adnan Ploskić ◽  
Qian Wang ◽  
Sasan Sadrizadeh

The aim of this study was to map the parameters that have the greatest impact on the environmental impact of heating systems usually used in Nordic single-family dwellings. The study focused on mapping the technical requirements for efficient operation of heating systems in a broader context. The results suggest that the ability of a heating system to be operated with a low-temperature water supply depends to a large extent on the heating demand of a building. It was shown that an increase in the water flow rate in hydronic circuits would significantly increase the thermal efficiency from analyzed heating systems. This increase would not increase the pumping power need, nor would it create noise problems in distribution network if the distribution pipes and thermostatic valves were properly selected. However, this increase in water flow rate improved the efficiency of considered closed-loop heat pump. It was further shown that the efficiency of the heat pump could be additionally improved by halving the energy needs for the domestic hot-water and circulators. The main conclusion from this study is that exergy usage, CO2 emission and thereby environmental impact are significantly lower for heating systems that are operated with small temperature drops.


2018 ◽  
Vol 44 ◽  
pp. 00054
Author(s):  
Agnieszka Jachura

This paper discusses the use of modern and effective heating systems, using fossil fuels and renewable energy sources on the example of a comparative analysis of a gas boiler and heat pump for a single-family building. The aim of the work was to conduct a comparative analysis of heating systems in terms of energy, economy and ecology. The concepts of heating systems based on a gas boiler and a heat pump are proposed. An economic analysis based on the LCC and ecological method was carried out, related to the equivalent emission, in order to compare the degree of environmental nuisance of the proposed heat sources. For the building in question, a more advantageous solution was the use of a system based on a condensing gas boiler. The economic analysis shows that in the assumed life cycle (20 years), the total cost for a heating system based on a gas boiler is lower than in the case of a heat pump by 11%. Also, the initial costs in this variant are lower by nearly half compared to the heat pump system. Environmental analyzes have shown lower annual emissions of pollutants and a 6-fold lower equivalent emission for a gas-fired heating system.


2020 ◽  
Vol 154 ◽  
pp. 07005
Author(s):  
Joanna Hałacz ◽  
Aldona Skotnicka-Siepsiak ◽  
Maciej Neugebauer ◽  
Krzysztof Nalepa ◽  
Piotr Sołowiej

The article presents the results of a study aiming to select the optimal source of heat for a newly designed single-family home. Commercial software was used to compare heating and ventilation systems involving a bituminous coal boiler, a condensing gas boiler, a biomass boiler, and a heat pump with water and glycol as heat transfer media. The effectiveness of natural ventilation, mechanical ventilation with a ground-coupled heat exchanger, and solar heater panels (flat and tubular) for water heating was evaluated. The analysis was based on the annual demand for useful energy, final energy and non-renewable primary energy in view of the pollution output of the evaluated heating systems. The analysis revealed that the heat pump with water and glycol as heat transfer media was the optimal solution. However, the performance of the heat pump in real-life conditions was below its maximum theoretical efficiency. The biomass boiler contributed to the highest reduction in pollutant emissions, but it was characterized by the highest demand for final energy. Mechanical ventilation with heat recovery was required in all analyzed systems to achieve the optimal results. Laboratory analyses confirmed the high efficiency of the tube heat exchanger in winter.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1224 ◽  
Author(s):  
Joanna Hałacz ◽  
Aldona Skotnicka-Siepsiak ◽  
Maciej Neugebauer

The article presents the results of a study aiming to select the optimal source of heat for a newly designed single-family home. Commercial software was used to compare heating and ventilation systems involving a bituminous coal boiler, a condensing gas boiler, a biomass boiler, a heat pump with water and glycol as heat transfer media. The effectiveness of natural ventilation, mechanical ventilation with a ground-coupled heat exchanger, and solar heater panels for water heating were evaluated. The analysis was based on the annual demand for useful energy, final energy, and non-renewable primary energy in view of the pollution output of the evaluated heating systems. The analysis revealed that the heat pump with water and glycol was the optimal solution. However, the performance of the heat pump in real-life conditions was below its maximum theoretical efficiency. The biomass boiler contributed to the highest reduction in pollutant emissions (according to Intergovernmental Panel on Climate Change Change guidelines, carbon dioxide emissions have zero value), but it was characterized by the highest demand for final energy. Mechanical ventilation with heat recovery was required in all analyzed systems to achieve optimal results. The introduction of mechanical ventilation decreased the demand for final energy by 10% to around 40% relative to the corresponding heating systems with natural ventilation.


2021 ◽  
Vol 236 ◽  
pp. 114042
Author(s):  
Tianhao Xu ◽  
Emma Nyholm Humire ◽  
Justin Ningwei Chiu ◽  
Samer Sawalha

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1321
Author(s):  
Yu-Jin Hwang ◽  
Jae-Weon Jeong

The objective of this research is to establish an appropriate operating strategy for a radiant floor heating system that additionally has an air source heat pump for providing convective air heating separately, leading to heating energy saving and thermal comfort in residential buildings. To determine the appropriate optimal operating ratio of each system taking charge of combined heating systems, the energy consumption of the entire system was drawn, and the adaptive floor surface temperature was reviewed based on international standards and literature on thermal comfort. For processing heating loads with radiant floor heating and air source heating systems, the heating capacity of radiant floor heating by 1 °C variation in floor temperature was calculated, and the remaining heating load was handled by the heating capacity of the convective air heating heat pump. Consequently, when the floor temperature was 25 °C, all heating loads were removed by radiant floor heating only. When handling all heating loads with the heat pump, 59.2% less energy was used compared with radiant floor heating only. Considering the local discomfort of the soles of the feet, the floor temperature is expected to be suitable at 22–23 °C, and 31.5–37.6% energy saving compared with those of radiant floor heating alone were confirmed.


Sign in / Sign up

Export Citation Format

Share Document