scholarly journals Mapping Relevant Parameters for Efficient Operation of Low-Temperature Heating Systems in Nordic Single-Family Dwellings

2018 ◽  
Vol 8 (10) ◽  
pp. 1973 ◽  
Author(s):  
Adnan Ploskić ◽  
Qian Wang ◽  
Sasan Sadrizadeh

The aim of this study was to map the parameters that have the greatest impact on the environmental impact of heating systems usually used in Nordic single-family dwellings. The study focused on mapping the technical requirements for efficient operation of heating systems in a broader context. The results suggest that the ability of a heating system to be operated with a low-temperature water supply depends to a large extent on the heating demand of a building. It was shown that an increase in the water flow rate in hydronic circuits would significantly increase the thermal efficiency from analyzed heating systems. This increase would not increase the pumping power need, nor would it create noise problems in distribution network if the distribution pipes and thermostatic valves were properly selected. However, this increase in water flow rate improved the efficiency of considered closed-loop heat pump. It was further shown that the efficiency of the heat pump could be additionally improved by halving the energy needs for the domestic hot-water and circulators. The main conclusion from this study is that exergy usage, CO2 emission and thereby environmental impact are significantly lower for heating systems that are operated with small temperature drops.

Author(s):  
Le Minh Nhut ◽  
Tran Quang Danh

Hot water is an important factor in domestic life and industrial development. Today, the heat pump is used to produce hot water more and more popular because it has many advantages of saving energy compared to the method of producing hot water by the hot water electric heater. The main aim of this study is to evaluate of the coefficient of performance (COP) of the small hot water heat pump using refrigeration R410A and R32. The capacity of both hot water heat pump is similar, one using new refrigerant R32 and other using refrigerant R410A. These heat pumps were designed and installed at the Ho Chi Minh City University of Technology and Education to evaluate the COP for the purpose of application the new refrigerant R32 for hot water heat pump. The compressor capacity is 1 Hp, the volume of hot water storage tank is of 100 liters and is insulated with thickness of 30 mm to reduce the heat loss to invironment, the required hot water temperature at the outlet of condenser is 50 oC, and the amount of required hot water is 75 liters per batch and is controlled by float valve. The experimental results indicate that the COP of the heat pump using the new refrigerant R32 is higher than heat pump using refrigerant R410A from 9% to 15% when the experimental conditions such as ambient temperature, initial water flow rate through the condenser and the required temperature of hot water were the same. In addition, the effect of the ambient temperature, initial water temperature and water flow rate were also evaluated.


2018 ◽  
Vol 3 ◽  
pp. 3 ◽  
Author(s):  
Kheira Tabet Aoul ◽  
Ahmad Hasan ◽  
Hassan Riaz

Building applied solar thermal systems are considered by different stakeholders an attractive alternative to traditional space and water heating systems. However, their performance depends largely on climatic conditions, water heating needs and operational parameters which, in turn, offer opportunities for performance optimization. The present research attempts to provide architects with a design decision tool that integrates solar thermal collectors efficiently to meet hot water demand for various building types inclusive of residential, commercial and industrial in a hot climate. The analysis is conducted numerically through a thermal model developed and executed in TRNSYS and validated experimentally. The parameters investigated include the collector tilt angle, azimuth angle and collector inlet fluid flow rate. Finally, the collector aperture area required per building foot print area is determined. The research revealed that for a 1000 m2 footprint building area of schools, offices, residential, factories and hospitals would require respectively 8 m2, 10 m2, 14 m2, 24 m2 and 38 m2 of the static collector installed at 24° tilt angle with optimal water flow rate. Additional operational aspects of collector tracking, and solar radiation concentration were investigated and further reduce the required collector area. A simple payback period analysis reveals a return on investment of 2 years applying subsidized tariff rates under the climatic conditions of, or similar to Dubai, in the United Arab Emirates.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Zhang ◽  
Tao Wang ◽  
Sulu Zheng ◽  
Xueyuan Peng ◽  
Xiaolin Wang

Gas engine driven heat pumps (GEHPs) represent one of practical solutions to effectively utilize fossil fuel energy and reduce environmental pollution. In this paper, the performance characteristics of the GEHP were investigated experimentally with engine heat recovery. A GEHP test facility was set up for this purpose. The effects of several important factors including engine speed, ambient temperature, condenser water flow rate, and condenser water inlet temperature on the system performance were studied over a wide range of operating conditions. The results showed that the engine waste heat accounted for about 40–50% of the total heat capacity over the studied operating conditions. It also showed that engine speed and ambient temperature had significant effects on the GEHP performance. The coefficient of performance (COP) and the primary energy ratio (PER) decreased by 14% and 12%, respectively, as engine speed increased from 1400 rpm to 2000 rpm. On the other hand, the COP and PER of the system increased by 22% and 16%, respectively, with the ambient temperature increasing from 3 to 12°C. Furthermore, it was demonstrated that the condenser water flow rate and condenser water inlet temperature had little influence on the COP of the heat pump and the PER of the GEHP system.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3894 ◽  
Author(s):  
Ji-Hyun Shin ◽  
Yong-In Kim ◽  
Young-Hum Cho

As the global energy trend continues, the importance of energy savings and efficient use is being emphasized, and the installation and operation of geothermal heat pump systems is increasing. In many buildings, where an actual geothermal heat pump system has been installed, problems of efficiency deterioration occur frequently because of the inefficient operation after installation of the heat pump system. The purpose of this study was to develop and verify the operating method for energy saving and performance improvement of multiple geothermal systems. A coefficient of performance (COP) prediction model using an artificial neural network for real-time COP predictions was developed. The operating method of a multi-geothermal heat pump system using a variable water flow rate control method and COP prediction model was developed. The geothermal heat pump system operates sequentially depending on the water flow rate of the circulation pump. The COP prediction model enabled real-time performance prediction during system operation. The circulation water flow rate was reduced by up to 29% compared to the existing operating method. Approximately 23% of the energy was saved. The COP system, including the consumption power of the circulation pump, was improved.


2020 ◽  
Vol 10 (3) ◽  
pp. 810 ◽  
Author(s):  
Jinfang Zhang ◽  
Zeyu Li ◽  
Yue Jing ◽  
Yongrui Xu

The solar absorption-subcooled compression hybrid cooling system (SASCHCS) is tech-economically feasible for high-rise buildings. Since such a system operates with no auxiliary heat source, the performance coupling of its absorption subsystem and solar collectors is sensitive to the variation of hot water flow rate. In this regard, the relationship of system performance and hot water flow rate is required to be clarified exactly. Therefore, this paper aims to illustrate the effect mechanism of hot water flow rate and to propose the corresponding decision criterion. The case study is based on a typical high-rise office building in subtropical Guangzhou. The daily working process of this system with different hot water flow rates is simulated and analyzed. Subsequently, the useful heat of collectors and cooling capacity of the absorption subsystem with the hot water flow rate is discussed in detail. The results show that the SASCHCS operates with hot water temperatures ranging from 60 °C to 90 °C. The energy saving increases with the rise of hot water flow rate, but such variation tends to be flat for the excessively high flow rate. As the collector flow rate increases from 1 m3/h to 10 m3/h, the daily energy saving improves by 21% in August. Similarly, the daily energy saving increases by 37.5% as generator hot water flow rate increases from 1 m3/h to 10 m3/h. In addition, the collector flow rate of 3.6 m3/h (13.33 (kg/m2 h)) and the generator flow rate of 5.2 m3/h (19.26 (kg/m2 h)) are optimal for the annual operation, with considering power consumption of water pumps. This paper is helpful for the improvement of SASCHCS operating performance.


2016 ◽  
Vol 63 (8) ◽  
pp. 592-600
Author(s):  
A. A. Belov ◽  
A. N. Ozerov ◽  
N. V. Usikov ◽  
I. A. Shkondin

Author(s):  
Edward W. Saltzberg

A hydronic heating system is simply a piping arrangement conveying hot water to heat exchangers in order to provide space heating. A conventional hydronic heating system usually delivers hot supply water at 180 to 200 Fahrenheit temperature and has a dedicated space heating boiler. The hot water return temperature is usually about 140 Fahrenheit, meaning a 40 to 60 temperature difference between supply and return. The conventional hydronic heating system has a relatively constant circulated water flow rate and the temperature of the delivered hot water supply can be reset from outside air temperature. The water flow balancing of a conventional hydronic heating system is somewhat straightforward, although quite critical. The pipe sizing is determined on the basis of gallons per minute flow rate, the selected system pressure drop, and the maximum prudent velocity for the specific piping material. The circulating pump is selected on the basis of the required gallons per minute


Sign in / Sign up

Export Citation Format

Share Document