scholarly journals Charged Dark Matters, Missing Neutrinos, Cosmic Rays and Extended Standard Model

Author(s):  
Jae-Kwang Hwang

In the present work, the charged B1, B2 and B3 bastons with the condition of k(mm) = k >> k(dd) > k(dm) = k(lq) = 0 are explained as the good candidates of the dark matters. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. The missing neutrinos are newly explained by using the dark matters and lepton charge force. The neutrino excess anomaly of the MinibooNE data is explained by the B1 dark matter scattering within the Cherenkov detectors. And the rest masses of 1.4 TeV/c2 and 42.7 GeV/c2 are assigned to the Le particle and the B2 dark matter, respectively, from the cosmic ray observations. In the present work, the Q1 baryon decays are used to explain the anti-Helium cosmic ray events. Because of the graviton evaporation and photon confinement, the very small Coulomb’s constant (k(dd)) of 10x-54k and gravitation constant (GN(dd)) of 10xGN for the charged dark matters at the present time are proposed. The x value can have the positive, zero or negative value around zero. Therefore, Fc(mm) > Fg(dd) (?) Fg(mm) > Fg(dm) > Fc(dd) > Fc(dm) = Fc(lq) = 0 for the proton-like particle.

Author(s):  
Jae-Kwang Hwang

In the present work, the charged dark matters of B1, B2 and B3 bastons are explained as the right-handed partners of the left-handed neutrinos. And the rest masses of the elementary particles depend on their charge configurations. The left-handed neutrinos have only the lepton charges (LC) and the right-handed dark matters have only the electric charges (EC). This explains the fact that the rest masses of the left-handed neutrinos are so small, and the rest masses of the right-handed dark matters are relatively very large. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. The missing neutrinos are newly explained by using the dark matters and lepton charge force. The neutrino excess anomaly of the MinibooNE data is explained by the B1 dark matter scattering within the Cherenkov detectors. The quark mixing and neutrino mixing are not required in the present model. It is shown that our matter universe and its partner antimatter universe can be created from the big bang in the point of view of time -, charge -, space -, and quantum state – symmetric universe evolution.


Author(s):  
Jae-Kwang Hwang

The properties of the dark matters, dark energy, graviton and photon are discussed in terms of the new three-dimensional quantized space model. Three new particles (bastons) with the electric charges (EC) are proposed as the dark matters. The decreasing coupling constant of the strong force and neutron lifetime anomaly are explained by the unobservable proton and hadronization. And the rest mass of 1.4 TeV/c2 is assigned to the Le particle with the EC charge of −2e. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. It is proposed that the EC, LC and CC charges are aligned along the time axes but not along the space axes. The photon is confined on its corresponding three-dimensional quantized space. However, the graviton can be evaporated into other three-dimensional quantized spaces. The rest mass and force range of the massive g(0,0,0) graviton with the Planck size are mg = 3.1872·10−31 eV/c2 and xr = 3.0955·1023 m = 10.0 Mpc, respectively, based on the experimental rest mass and rms charge radius of the proton. The possible diameter (10 Mpc) of the largest galaxy cluster is remarkably consistent with the gravitational force range (10 Mpc). Then, the diameter of the largest dark matter distribution related to the largest galaxy cluster is 9.2865·1023 m = 30 Mpc equal to the force range of the massive g(0) graviton with the rest mass of 1.0624·10−31 eV/c2. The reason why the gravitational force between normal matters is very weak when compared with other forces is explained by the graviton evaporation and photon confinement. Because of the huge number (N) of the evaporated gravitons into the x1x2x3 space, it is concluded that the gravitational force between dark matters should be much stronger than the gravitational force between the normal matters and the repulsive electromagnetic force between dark matters. The proposed weak gravitational force between the dark matters and normal matters explains the observed dark matter distributions of the bullet cluster, Abell 1689 cluster and Abell 520 cluster. The transition from the galaxy without the dark matters to the galaxy with the dark matters are explained. Also, the accelerated space expansion is caused by the new space quanta created by the evaporated gravitons into the x1x2x3 space and repulsive electromagnetic force between dark matters corresponding to the dark energy. And the space evolution can be described by using these graviton evaporation and repulsive electromagnetic force, too.


Author(s):  
Jae-Kwang Hwang

The properties of the dark matter, dark energy, graviton and photon are discussed in terms of the new three-dimensional quantized space model. Three new particles (bastons) with the electric charges (EC) are proposed as the dark matters. It is proposed that the EC, LC and CC charges are aligned along the time axes but not along the space axes. The photon is confined on its corresponding three-dimensional quantized space. However, the graviton can be evaporated into other three-dimensional quantized spaces. The rest mass of the electron neutrino (ne) of 3.494·10−3 eV/c2 is obtained from the experimental vacuum energy density in terms of quantum field theory (QFT). The rest mass and force range of the massive g(0,0,0) graviton with the Planck size are mg = 3.1872·10−31 eV/c2 and xr = 3.0955·1023 m = 10.0 Mpc, respectively, based on the experimental rest mass and rms charge radius of the proton. The possible diameter (10 Mpc) of the largest galaxy cluster is remarkably consistent with the gravitational force range (10 Mpc). Then, the diameter of the largest dark matter distribution related to the largest galaxy cluster is 9.2865·1023 m = 30 Mpc equal to the force range of the massive g(0) graviton with the rest mass of 1.0624·10−31 eV/c2. Because of the huge number (N) of the evaporated gravitons, the very small Coulomb’s constant of about 10−48k and large gravitation constant of 106GN are expected for the charged dark matters. Therefore, Fc(mm) > Fg(dd) > Fg(mm) > Fg(dm) > Fc(dd) > Fc(dm) = 0 for the proton-like particle. The proposed weak gravitational force between the dark matters and normal matters explains the observed dark matter distributions of the bullet cluster, Abell 1689 cluster and Abell 520 cluster. The transition from the galaxy without the dark matters to the galaxy with the dark matters are explained. Also, the accelerated space expansion is caused by the new space quanta created by the evaporated gravitons into the x1x2x3 space and repulsive electromagnetic force between dark matters corresponding to the dark energy. The decreasing coupling constant of the strong force, neutron lifetime anomaly and the pressure distribution inside the proton are explained by the unobservable proton and hadronization. And the rest mass of 1.4 TeV/c2 is assigned to the Le particle with the EC charge of −2e. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. Also, the gravitation constant has been changing with the time because of the graviton evaporation.


Author(s):  
Jae-Kwang Hwang

In the present work, the charged dark matters of B1, B2 and B3 bastons are explained as the right-handed partners of the left-handed neutrinos. The new Higgs mechanism of SU(2)DM×SU(2)Weak×SU(2)Strong  including electromagnetic and gravitational forces is applied. And the rest masses of the elementary particles depend on their charge configurations. The left-handed neutrinos have only the lepton charges (LC) and the right-handed dark matters have only the electric charges (EC). This explains the fact that the rest masses of the left-handed neutrinos are so small, and the rest masses of the right-handed dark matters are relatively very large. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. The missing neutrinos are newly explained by using the dark matters and lepton charge force. The neutrino excess anomaly of the MinibooNE data is explained by the B1 dark matter scattering within the Cherenkov detectors. The quark mixing and neutrino mixing are not required in the present model. It is shown that our matter universe and its partner antimatter universe can be created from the big bang in the point of view of time -, charge -, space -, and quantum state – symmetric universe evolution.


2021 ◽  
Vol 103 (9) ◽  
Author(s):  
James B. Dent ◽  
Bhaskar Dutta ◽  
Jayden L. Newstead ◽  
Ian M. Shoemaker ◽  
Natalia Tapia Arellano
Keyword(s):  

2020 ◽  
Vol 500 (4) ◽  
pp. 5583-5588
Author(s):  
Man Ho Chan ◽  
Chak Man Lee

ABSTRACT In the past decade, various instruments, such as the Large Area Telescope (LAT) on the Fermi Gamma Ray Space Telescope, the Alpha Magnetic Spectrometer (AMS) and the Dark Matter Particle Explorer(DAMPE), have been used to detect the signals of annihilating dark matter in our Galaxy. Although some excesses of gamma rays, antiprotons and electrons/positrons have been reported and are claimed to be dark matter signals, the uncertainties of the contributions of Galactic pulsars are still too large to confirm the claims. In this paper, we report on a possible radio signal of annihilating dark matter manifested in the archival radio continuum spectral data of the Abell 4038 cluster. By assuming a thermal annihilation cross-section and comparing the dark matter annihilation model with the null hypothesis (cosmic ray emission without dark matter annihilation), we obtain very large test statistic (TS) values, TS > 45, for four popular annihilation channels, which correspond to more than 6σ statistical preference. This reveals a possible potential signal of annihilating dark matter. In particular, our results are also consistent with the recent claims of dark matter mass, m ≈ 30–50 GeV, annihilating via the $\rm b\bar{b}$ quark channel with the thermal annihilation cross-section. However, at this time, we cannot exclude the possibility that a better background cosmic ray model could explain the spectral data without recourse to dark matter annihilations.


2019 ◽  
Vol 495 (1) ◽  
pp. L124-L128 ◽  
Author(s):  
Man Ho Chan ◽  
Chak Man Lee

ABSTRACT In the past decade, some telescopes [e.g. Fermi-Large Area Telescope (LAT), Alpha Magnetic Spectrometer(AMS), and Dark Matter Particle Explorer(DAMPE)] were launched to detect the signals of annihilating dark matter in our Galaxy. Although some excess of gamma-rays, antiprotons, and electrons/positrons have been reported and claimed as dark matter signals, the uncertainties of Galactic pulsars’ contributions are still too large to confirm the claims. In this Letter, we report a possible radio signal of annihilating dark matter manifested in the archival radio continuum spectral data of the Abell 4038 cluster. By assuming the thermal annihilation cross-section and comparing the dark matter annihilation model with the null hypothesis (cosmic ray emission without dark matter annihilation), we get very large test statistic values >45 for four popular annihilation channels, which correspond to more than 6.5σ statistical preference. This provides a very strong evidence for the existence of annihilating dark matter. In particular, our results also support the recent claims of dark matter mass m ≈ 30–50 GeV annihilating via the bb̄ quark channel with the thermal annihilation cross-section.


1987 ◽  
Vol 117 ◽  
pp. 414-414
Author(s):  
Jonathan C. McDowell

It has been proposed (e.g. Carr, Bond and Arnett 1984) that the first generation of stars may have been Very Massive Objects (VMOs, of mass above 200 M⊙) which existed at large redshifts and left a large fraction of the mass of the universe in black hole remnants which now provide the dynamical ‘dark matter’. The radiation from these stars would be present today as extragalactic background light. For stars with density parameter Ω* which convert a fraction ϵ of their rest-mass to radiation at a redshift of z, the energy density of background radiation in units of the critical density is ΩR = εΩ* / (1+z). The VMOs would be far-ultraviolet sources with effective temperatures of 105 K. If the radiation is not absorbed, the constraints provided by measurements of background radiation imply (for H =50 km/s/Mpc) that the stars cannot close the universe unless they formed at a redshift of 40 or more. To provide the dark matter (of one-tenth closure density) the optical limits imply that they must have existed at redshifts above 25.


2010 ◽  
Author(s):  
David Tran ◽  
George Alverson ◽  
Pran Nath ◽  
Brent Nelson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document