scholarly journals Left-Handed Neutrinos, Charged Dark Matters, Universe Evolution and Extended Standard Model

Author(s):  
Jae-Kwang Hwang

In the present work, the charged dark matters of B1, B2 and B3 bastons are explained as the right-handed partners of the left-handed neutrinos. And the rest masses of the elementary particles depend on their charge configurations. The left-handed neutrinos have only the lepton charges (LC) and the right-handed dark matters have only the electric charges (EC). This explains the fact that the rest masses of the left-handed neutrinos are so small, and the rest masses of the right-handed dark matters are relatively very large. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. The missing neutrinos are newly explained by using the dark matters and lepton charge force. The neutrino excess anomaly of the MinibooNE data is explained by the B1 dark matter scattering within the Cherenkov detectors. The quark mixing and neutrino mixing are not required in the present model. It is shown that our matter universe and its partner antimatter universe can be created from the big bang in the point of view of time -, charge -, space -, and quantum state – symmetric universe evolution.

Author(s):  
Jae-Kwang Hwang

In the present work, the charged dark matters of B1, B2 and B3 bastons are explained as the right-handed partners of the left-handed neutrinos. The new Higgs mechanism of SU(2)DM×SU(2)Weak×SU(2)Strong  including electromagnetic and gravitational forces is applied. And the rest masses of the elementary particles depend on their charge configurations. The left-handed neutrinos have only the lepton charges (LC) and the right-handed dark matters have only the electric charges (EC). This explains the fact that the rest masses of the left-handed neutrinos are so small, and the rest masses of the right-handed dark matters are relatively very large. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. The missing neutrinos are newly explained by using the dark matters and lepton charge force. The neutrino excess anomaly of the MinibooNE data is explained by the B1 dark matter scattering within the Cherenkov detectors. The quark mixing and neutrino mixing are not required in the present model. It is shown that our matter universe and its partner antimatter universe can be created from the big bang in the point of view of time -, charge -, space -, and quantum state – symmetric universe evolution.


Author(s):  
Jae-Kwang Hwang

The properties of the charged dark matters are discussed in terms of the new three-dimensional quantized space model. Because of the graviton evaporations, the very small Coulomb’s constant (k(dd)) of 10 −48 k and large gravitation constant (GN(dd)) of 106 GN for the charged dark matters at the present time are expected. The tentative values of G and k are used for the explanation purpose. Therefore, Fc(mm) > Fg(dd) > Fg(mm) > Fg(dm) > Fc(dd) > Fc(dm) = Fc(lq) = 0 for the proton-like particle. Also, the gravitation constant has been changed with increasing of the time because of the graviton evaporation. In the present work, the B1, B2 and B3 bastons with the condition of k(mm) = k >> k(dd) > k(dm) = 0 are explained as the good candidates of the dark matters. Also, the particle creation, dark matters and dark energy could be deeply associated with the changing gravitation constants (G). It is expected that the changing process of the gravitation constant between the matters from GN(mm) ≈ 1036 GN to GN(mm) = GN happened mostly near the inflation period. Therefore, during most of the universe evolution the gravitation constant could be taken as GN(mm) = GN. And the effective charges and effective rest masses of the particles are defined in terms of the fixed Coulomb’s constant (k) and fixed gravitation constant (GN). Then, the effective charge of the B1 dark matter with EC = −2/3 e is (EC)eff = −2/3·10−24 e. It is concluded that the photons, gravitons and dark matters are the first particles created since the big bang. The particles can be created from the decay of the matter universe and the pair production of the particle and anti-particle with decreasing of the gravitation constant (GN(mm)). Also, the weak force, strong force and dark matter force bosons are created from the interactions of the elementary particles with the T fluctuations of the vacuum energy.


Author(s):  
Jae-Kwang Hwang

The properties of the charged dark matters are discussed in terms of the new three-dimensional quantized space model. Because of the graviton evaporations, the very small Coulomb’s constant (k(dd)) of 10 −48 k and large gravitation constant (GN(dd)) of 106 GN for the charged dark matters at the present time are expected. The tentative values of G and k are used for the explanation purpose. Therefore, Fc(mm) > Fg(dd) > Fg(mm) > Fg(dm) > Fc(dd) > Fc(dm) = Fc(lq) = 0 for the proton-like particle. Also, the gravitation constant has been changed with increasing of the time because of the graviton evaporation. In the present work, the B1, B2 and B3 bastons with the condition of k(mm) = k >> k(dd) > k(dm) = 0 are explained as the good candidates of the dark matters. Also, the particle creation, dark matters and dark energy could be deeply associated with the changing gravitation constants (G). It is expected that the changing process of the gravitation constant between the matters from GN(mm) ≈ 1036 GN to GN(mm) = GN happened mostly near the inflation period. Therefore, during most of the universe evolution the gravitation constant could be taken as GN(mm) = GN. And the effective charges and effective rest masses of the particles are defined in terms of the fixed Coulomb’s constant (k) and fixed gravitation constant (GN). Then, the effective charge of the B1 dark matter with EC = −2/3 e is (EC)eff = −2/3·10−24 e. It is concluded that the photons, gravitons and dark matters are the first three particles created since the big bang. The particles can be created from the decay of the matter universe and the pair production of the particle and anti-particle with decreasing of the gravitation constant (GN(mm)).


Author(s):  
Jae-Kwang Hwang

The origins of the stellar mass neutron black holes and supermassive dark matter black holes without the singularities are reported based on the 4-D Euclidean space. The neutron black holes with the mass of mBH = 5 – 15 msun are made by the 6-quark merged states (N6q) of two neutrons with the mass (m(N6q) = 10 m(n)) of 9.4 GeV/c2 that gives the black hole mass gap of mBH = 3 – 5 msun. Also, the supermassive black holes with the mass of mSMBH = 106 – 1011 msun are made by the merged 3-D states (J(B1B2B3)3 particles) of the dark matters. The supermassive black hole at the center of the Milky way galaxy has the mass of mSMBH = 4.1 106 msun that is consistent with mSMBH = 2.08 - 6.23 106 msun calculated from the 3-D states (J(B1B2B3)3 particles) of the dark matters with the mass of m(J) = 1.95 1015 eV/c2. In other words, this supports the existence of the B1, B2 and B3 dark matters with the proposed masses. The first dark matter black hole (primary black hole) was created at the big bang. This first dark matter black hole decayed to the supermassive dark matter black holes through the secondary dark matter black holes that are explained by the merged states of the J(B1B2B3)3 particles. The universe evolution is closely connected to the decaying process of the dark matter black holes since the big bang. The dark matter cloud states are proposed at the intermediate mass black hole range of mIMBH = 102 – 105 msun. This can explain why the dark matter black holes are not observed at the intermediate mass black hole range of mIMBH = 102 – 105 msun.


Author(s):  
Jae-Kwang Hwang

The origins of the stellar mass neutron black holes and supermassive dark matter black holes without the singularities are reported based on the 4-D Euclidean space. The neutron black holes with the mass of mBH = 5 – 15 msun are made by the 6-quark merged states (N6q) of two neutrons with the mass (m(N6q) = 10 m(n)) of 9.4 GeV/c2 that gives the black hole mass gap of mBH = 3 – 5 msun. Also, the supermassive black holes with the mass of mSMBH = 106 – 1011 msun are made by the merged 3-D states (J(B1B2B3)3 particles) of the dark matters. The supermassive black hole at the center of the Milky way galaxy has the mass of mSMBH = 4.1 106 msun that is consistent with mSMBH = 2.08 - 6.23 106 msun calculated from the 3-D states (J(B1B2B3)3 particles) of the dark matters with the mass of m(J) = 1.95 1015 eV/c2. In other words, this supports the existence of the B1, B2 and B3 dark matters with the proposed masses. The first dark matter black hole (primary black hole) was created at the big bang. This first dark matter black hole decayed to the supermassive dark matter black holes through the secondary dark matter black holes that are explained by the merged states of the J(B1B2B3)3 particles. The universe evolution is closely connected to the decaying process of the dark matter black holes since the big bang. The dark matter cloud states are proposed at the intermediate mass black hole range of mIMBH = 102 – 105 msun. This can explain why the dark matter black holes are not observed at the intermediate mass black hole range of mIMBH = 102 – 105 msun.


Author(s):  
Jae-Kwang Hwang

In the present work, the charged B1, B2 and B3 bastons with the condition of k(mm) = k >> k(dd) > k(dm) = k(lq) = 0 are explained as the good candidates of the dark matters. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. The missing neutrinos are newly explained by using the dark matters and lepton charge force. The neutrino excess anomaly of the MinibooNE data is explained by the B1 dark matter scattering within the Cherenkov detectors. And the rest masses of 1.4 TeV/c2 and 42.7 GeV/c2 are assigned to the Le particle and the B2 dark matter, respectively, from the cosmic ray observations. In the present work, the Q1 baryon decays are used to explain the anti-Helium cosmic ray events. Because of the graviton evaporation and photon confinement, the very small Coulomb’s constant (k(dd)) of 10x-54k and gravitation constant (GN(dd)) of 10xGN for the charged dark matters at the present time are proposed. The x value can have the positive, zero or negative value around zero. Therefore, Fc(mm) > Fg(dd) (?) Fg(mm) > Fg(dm) > Fc(dd) > Fc(dm) = Fc(lq) = 0 for the proton-like particle.


2015 ◽  
Vol 93 (10) ◽  
pp. 1005-1008 ◽  
Author(s):  
Rasulkhozha S. Sharafiddinov

The unity of the structure of matter fields with flavor symmetry laws involves that the left-handed neutrino in the field of emission can be converted into a right-handed one and vice versa. These transitions together with classical solutions of the Dirac equation testify in favor of the unidenticality of masses, energies, and momenta of neutrinos of the different components. If we recognize such a difference in masses, energies, and momenta, accepting its ideas about that the left-handed neutrino and the right-handed antineutrino refer to long-lived leptons, and the right-handed neutrino and the left-handed antineutrino are short-lived fermions, we would follow the mathematical logic of the Dirac equation in the presence of the flavor symmetrical mass, energy, and momentum matrices. From their point of view, nature itself separates Minkowski space into left and right spaces concerning a certain middle dynamical line. Thereby, it characterizes any Dirac particle both by left and by right space–time coordinates. It is not excluded therefore that whatever the main purposes each of earlier experiments about sterile neutrinos, namely, about right-handed short-lived neutrinos may serve as the source of facts confirming the existence of a mirror Minkowski space–time.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740002 ◽  
Author(s):  
Andrea Addazi ◽  
Maxim Yu. Khlopov

We review our recent results on dark matter from Starobinsky supergravity. In this context, a natural candidate for cold dark matter is the gravitino. On the other hand, assuming the supersymmetry broken at scales much higher than the electroweak scale, gravitinos are superheavy particles. In this case, they may be non-thermally produced during inflation, in turn originated by the scalaron field with Starobinsky’s potential. Assuming gravitinos as Lightest Supersymmetric Particles (LSSP), the non-thermal production naturally accounts for the right amount of cold dark matter. Metastability of the gravitino LSSP leads to observable effects of their decay, putting constraints on the corresponding Unstable or Decaying Dark Matters scenarios. In this model, the gravitino mass is controlled by the inflaton field and it runs with it. This implies that a continuous spectrum of superheavy gravitinos is produced during the slow-roll epoch. Implications in phenomenology, model building in Grand Unified Theory (GUT) scenarios, intersecting D-brane models and instantons in string theories are discussed.


Author(s):  
Jae-Kwang Hwang

The properties of the charged dark matters are discussed in terms of the new three-dimensional quantized space model. Because of the graviton evaporations, the very small Coulomb’s constant (k(dd)) of 10-48 k and large gravitation constant (GN(dd)) of 106 GN for the charged dark matters at the present time are expected. The tentative values of G and k are used for the explanation purpose. Therefore, Fc(mm) > Fg(dd) > Fg(mm) > Fg(dm) > Fc(dd) > Fc(dm) = 0 for the proton-like particle. Also, the gravitation constant has been changed with increasing of the time because of the graviton evaporation. In the present work, the B1, B2 and B3 bastons with the condition of k(mm) = k >> k(dd) > k(dm) = 0 are explained as the good candidates of the dark matters. Also, the particle creation, dark matters and dark energy could be deeply associated with the changing gravitation constants (G). It is expected that the changing process of the gravitation constant between the matters from GN(mm) ≈ 1036 GN to GN(mm) = GN happened mostly near the inflation period. Therefore, during most of the universe evolution the gravitation constant could be taken as GN(mm) = GN. And the effective charges and effective rest masses of the particles are defined in terms of the fixed Coulomb’s constant (k) and fixed gravitation constant (GN). Then, the effective charge of the B1 dark matter with EC = −2/3 e is (EC)eff = −2/3·10−24 e.


Author(s):  
Jae-Kwang Hwang

The properties of the dark matters, dark energy, graviton and photon are discussed in terms of the new three-dimensional quantized space model. Three new particles (bastons) with the electric charges (EC) are proposed as the dark matters. The decreasing coupling constant of the strong force and neutron lifetime anomaly are explained by the unobservable proton and hadronization. And the rest mass of 1.4 TeV/c2 is assigned to the Le particle with the EC charge of −2e. The proposed rest mass (26.12 eV/c2) of the B1 dark matter is indirectly confirmed from the supernova 1987A data. It is proposed that the EC, LC and CC charges are aligned along the time axes but not along the space axes. The photon is confined on its corresponding three-dimensional quantized space. However, the graviton can be evaporated into other three-dimensional quantized spaces. The rest mass and force range of the massive g(0,0,0) graviton with the Planck size are mg = 3.1872·10−31 eV/c2 and xr = 3.0955·1023 m = 10.0 Mpc, respectively, based on the experimental rest mass and rms charge radius of the proton. The possible diameter (10 Mpc) of the largest galaxy cluster is remarkably consistent with the gravitational force range (10 Mpc). Then, the diameter of the largest dark matter distribution related to the largest galaxy cluster is 9.2865·1023 m = 30 Mpc equal to the force range of the massive g(0) graviton with the rest mass of 1.0624·10−31 eV/c2. The reason why the gravitational force between normal matters is very weak when compared with other forces is explained by the graviton evaporation and photon confinement. Because of the huge number (N) of the evaporated gravitons into the x1x2x3 space, it is concluded that the gravitational force between dark matters should be much stronger than the gravitational force between the normal matters and the repulsive electromagnetic force between dark matters. The proposed weak gravitational force between the dark matters and normal matters explains the observed dark matter distributions of the bullet cluster, Abell 1689 cluster and Abell 520 cluster. The transition from the galaxy without the dark matters to the galaxy with the dark matters are explained. Also, the accelerated space expansion is caused by the new space quanta created by the evaporated gravitons into the x1x2x3 space and repulsive electromagnetic force between dark matters corresponding to the dark energy. And the space evolution can be described by using these graviton evaporation and repulsive electromagnetic force, too.


Sign in / Sign up

Export Citation Format

Share Document