scholarly journals Regularized Integral Representations of the Reciprocal Gamma Function

Author(s):  
Dimiter Prodanov

This paper establishes a real integral representation of the reciprocal $\Gamma$ function in terms of a regularized hypersingular integral. The equivalence with the usual complex representation is demonstrated. A regularized complex representation along the usual Hankel path is derived.

2019 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Dimiter Prodanov

This paper establishes a real integral representation of the reciprocal Gamma function in terms of a regularized hypersingular integral along the real line. A regularized complex representation along the Hankel path is derived. The equivalence with the Heine’s complex representation is demonstrated. For both real and complex integrals, the regularized representation can be expressed in terms of the two-parameter Mittag-Leffler function. Reference numerical implementations in the Computer Algebra System Maxima are provided.


1992 ◽  
Vol 5 (4) ◽  
pp. 291-305 ◽  
Author(s):  
D. Ugrin-Šparac

The renewal process generated by the uniform distribution, when interpreted as a transformation of the uniform distribution into a discrete distribution, gives rise to the question of uniqueness of the inverse image. The paper deals with a particular problem from the described domain, that arose in the construction of a complex stochastic test intended to evaluate pseudo-random number generators. The connection of the treated problem with the question of a unique integral representation of Gamma-function is also mentioned.


2021 ◽  
Vol 13 (4) ◽  
pp. 50-62
Author(s):  
Andrew Borisovich Kostin ◽  
Vladimir Borisovich Sherstyukov

Author(s):  
Jean Zinn-Justin

Langevin equations for fields have been proposed to describe the dynamics of critical phenomena, or as an alternative method of quantization, which could be useful in cases where ordinary methods lead to difficulties, like in gauge theories. Some of their general properties will be described here. For a number of problems, in particular related to perturbation theory, it is more convenient to work with an action and a field integral than with the equation directly, because standard methods of quantum field theory (QFT) then become available. For this purpose, one can associate a field integral representation, involving a dynamic action to the Langevin equation. The dynamic action can be interpreted as generated by the Langevin equation, considered as a constraint equation. Quite generally, the integral representation of constraint equations, including stochastic equations, leads to an action that has a Slavnov–Taylor (ST) symmetry and, in a different form, has an anticommuting type Becchi–Rouet–Stora–Tyutin (BRST) symmetry, a symmetry that involves anticommuting parameters. This symmetry has no geometric origin, but is merely a consequence of associating a specific form of integral representations to the constraint equations. This symmetry is used in a number of different examples to prove the renormalizability of non-Abelian gauge theories, or to prove the geometric stability of models defined on homogeneous spaces under renormalization. In this chapter, it is used to prove Ward-Takahashi (WT) identities, and to determine how the Langevin equation renormalizes.


1990 ◽  
Vol 42 (3) ◽  
pp. 410-469 ◽  
Author(s):  
Alain Bélanger ◽  
Erik G. F. Thomas

Abstract.The main result of this paper establishes the existence and uniqueness of integral representations of KMS functionals on nuclear *- algebras. Our first result is about representations of *-algebras by means of operators having a common dense domain in a Hilbert space. We show, under certain regularity conditions, that (Powers) self-adjoint representations of a nuclear *-algebra, which admit a direct integral decomposition, disintegrate into representations which are almost all self-adjoint. We then define and study the class of self-derivative algebras. All algebras with an identity are in this class and many other examples are given. We show that if is a self-derivative algebra with an equicontinuous approximate identity, the cone of all positive forms on is isomorphic to the cone of all positive invariant kernels on These in turn correspond bijectively to the invariant Hilbert subspaces of the dual space This shows that if is a nuclear -space, the positive cone of has bounded order intervals, which implies that each positive form on has an integral representation in terms of the extreme generators of the cone. Given a continuous exponentially bounded one-parameter group of *-automorphisms of we can define the subcone of all invariant positive forms satisfying the KMS condition. Central functionals can be viewed as KMS functionals with respect to a trivial group action. Assuming that is a self-derivative algebra with an equicontinuous approximate identity, we show that the face generated by a self-adjoint KMS functional is a lattice. If is moreover a nuclear *-algebra the previous results together imply that each self-adjoint KMS functional has a unique integral representation by means of extreme KMS functionals almost all of which are self-adjoint.


1992 ◽  
Vol 15 (4) ◽  
pp. 653-657 ◽  
Author(s):  
Vu Kim Tuan ◽  
R. G. Buschman

The generalized hypergeometric function was introduced by Srivastava and Daoust. In the present paper a new integral representation is derived. Similarly new integral representations of Lauricella and Appell function are obtained.


Author(s):  
Francis Noblesse ◽  
Chi Yang ◽  
Dane Hendrix ◽  
Rainald Lo¨hner

The fundamental problem of determining the free-surface potential flow that corresponds to a given flow at a ship hull surface is reconsidered. Stokes’ theorem is used to transform the dipole distribution over the ship hull surface in the classical boundary-integral representation of the velocity potential. This Stokes’ transformation yields a weakly-singular boundary-integral representation that defines the potential in terms of the Green function G and related functions that are no more singular than G. Accordingly, the velocity representation only involves functions that are no more singular than ∇G.


2015 ◽  
Vol 92 (1) ◽  
pp. 31-49
Author(s):  
Mian Arif Shams Adnan ◽  
Humayun Kiser ◽  
Zahida Sultana Irin ◽  
Asif Shams Adnan ◽  
M. Shamsuddin

2002 ◽  
Vol 45 (2) ◽  
pp. 327-331 ◽  
Author(s):  
N. Castro González ◽  
J. J. Koliha ◽  
Yimin Wei

AbstractThe purpose of this paper is to derive an integral representation of the Drazin inverse of an element of a Banach algebra in a more general situation than previously obtained by the second author, and to give an application to the Moore–Penrose inverse in a $C^*$-algebra.AMS 2000 Mathematics subject classification:Primary 46H05; 46L05


Sign in / Sign up

Export Citation Format

Share Document