scholarly journals Cost Uncertainties in Energy System Optimisation Models: A Quadratic Programming Approach for Avoiding Penny Switching Effects

Author(s):  
Peter Lopion ◽  
Peter Markewitz ◽  
Detlef Stolten ◽  
Martin Robinius

Designing the future energy supply in accordance with ambitious climate change mitigation goals is a challenging issue. Common tools for planning and calculating future investments in renewable and sustainable technologies are often linear energy system models based on cost optimisation. However, input data and the underlying assumptions of future developments are subject to uncertainties that negatively affect the robustness of results. This paper introduces a quadratic programming approach to modifying linear, bottom-up energy system optimisation models in order to take cost uncertainties into account. This is accomplished by implementing specific investment costs as a function of the installed capacity of each technology. In contrast to established approaches like stochastic programming or Monte Carlo Simulation, the computation time of the quadratic programming approach is only slightly higher than that of linear programming. The model’s outcomes were found to show a wider range as well as a more robust allocation of the considered technologies than the linear model equivalent.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4006 ◽  
Author(s):  
Lopion ◽  
Markewitz ◽  
Stolten ◽  
Robinius

Designing the future energy supply in accordance with ambitious climate change mitigation goals is a challenging issue. Common tools for planning and calculating future investments in renewable and sustainable technologies are often linear energy system models based on cost optimization. However, input data and the underlying assumptions of future developments are subject to uncertainties that negatively affect the robustness of results. This paper introduces a quadratic programming approach to modifying linear, bottom-up energy system optimization models to take cost uncertainties into account. This is accomplished by implementing specific investment costs as a function of the installed capacity of each technology. In contrast to established approaches such as stochastic programming or Monte Carlo simulation, the computation time of the quadratic programming approach is only slightly higher than that of linear programming. The model’s outcomes were found to show a wider range as well as a more robust allocation of the considered technologies than the linear model equivalent.


Climate ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 136
Author(s):  
Rebecca J. Barthelmie ◽  
Sara C. Pryor

Global wind resources greatly exceed current electricity demand and the levelized cost of energy from wind turbines has shown precipitous declines. Accordingly, the installed capacity of wind turbines grew at an annualized rate of about 14% during the last two decades and wind turbines now provide ~6–7% of the global electricity supply. This renewable electricity generation source is thus already playing a role in reducing greenhouse gas emissions from the energy sector. Here we document trends within the industry, examine projections of future installed capacity increases and compute the associated climate change mitigation potential at the global and regional levels. Key countries (the USA, UK and China) and regions (e.g., EU27) have developed ambitious plans to expand wind energy penetration as core aspects of their net-zero emissions strategies. The projected climate change mitigation from wind energy by 2100 ranges from 0.3–0.8 °C depending on the precise socio-economic pathway and wind energy expansion scenario followed. The rapid expansion of annual increments to wind energy installed capacity by approximately two times current rates can greatly delay the passing of the 2 °C warming threshold relative to pre-industrial levels. To achieve the required expansion of this cost-effective, low-carbon energy source, there is a need for electrification of the energy system and for expansion of manufacturing and installation capacity.


2019 ◽  
Author(s):  
Johannes Schmidt ◽  
Katharina Gruber ◽  
Michael Klingler ◽  
Claude Klöckl ◽  
Luis Ramirez Camargo ◽  
...  

Recent global modelling studies suggest a decline of long-distance trade in energy carriers in future global renewable energy systems, compared to today’s fossil fuel energy system. In contrast, we identified four crucial drivers that enable trade of renewable energy carriers. These drivers could make trade remain at current levels or even increase during the transition to an energy system with very high shares of renewables. First, new land-efficient technologies for renewable fuel production become increasingly available and technically allow for long-distance trade in renewables. Second, regional differences in social acceptance and land availability for energy infrastructure support the development of renewable fuel import and export streams. Third, the economics of renewable energy systems, i.e. the different production conditions globally and the high costs of fully renewable regional electricity systems, will create opportunities for spatial arbitrage. Fourth, the reduction of stranded investments in the fossil fuel sector is possible by switching from fossil fuel to renewable fuel trade in exporting regions.The impact of these drivers on trade in energy carriers is currently under-investigated by the global energy research community. Therefore, we call for a major research effort in this field, in particular as trade can redistribute profits and losses of climate change mitigation and may hence support finding new partners in climate change mitigation negotiations.


2021 ◽  
Vol 23 (3) ◽  
pp. 73-79
Author(s):  
Jasmina Mandić Lukić ◽  
◽  
Đorđina Milovanović ◽  
Maja Stipić ◽  
Sanja Petrović Bećirović ◽  
...  

Faced with forthcoming international obligations related to climate change mitigation measures, primarily planned to be reflected through the Law and Action Plan on Low Carbon Development Strategy, as well as the Law on Climate Change, all of which are currently being defined and adopted, Serbia is increasingly facing a need to switch its coal-fired facilities to alternative, environmentally more acceptable options. The related measures will have to be implemented much sooner than initially planned. Knowing that 80% of national GHG emissions originate from the energy sector, as well as that the dominant portion of those emissions results from the use of locally available coal, it is clear that the most efficient climate change mitigation measure would be a switch to alternative fuel options. However, having in mind that such an energy transition process is coupled with significant technological, environmental, economic, social, and other difficulties, the EU has initiated several projects, and one of them is TRACER, launched under the Horizon 2020 program, that strives to shed light on the best research and innovation strategies facilitating easier transition to the sustainable, low carbon energy system. The project addresses actions across nine coal-intensive European regions, including Kolubara Region in Serbia. The paper presents technological, environmental, and social challenges in the transition process, with an emphasis on the Kolubara region, and a proposal for the energy transition in Serbia respecting R&I strategies and Smart Specialization.


2017 ◽  
Vol 144 (2) ◽  
pp. 151-163 ◽  
Author(s):  
Hang Deng ◽  
Jeffrey M. Bielicki ◽  
Michael Oppenheimer ◽  
Jeffrey P. Fitts ◽  
Catherine A. Peters

2007 ◽  
Vol 12 (3) ◽  
pp. 359-378 ◽  
Author(s):  
DENNIS ANDERSON ◽  
SARAH WINNE

Through a dynamic model of energy system change the paper examines the role of innovation in bringing about a low carbon energy system. The processes of innovation and technological substitution are cumulative, dynamic, and highly non-linear processes such that how the energy system evolves in the long term is extraordinarily sensitive to the strength and duration of the initial policies. It is possible, under some policy assumptions, that energy systems would continue to depend on fossil fuels for so long as fossil fuels remain abundant and the least cost resource; and under other assumptions, after allowing for the unavoidable lags associated with investment and the building up of a new capital stock, that fossil fuels would become almost wholly displaced by the non-carbon alternatives. The implication is that the external benefits of innovation, which include the creation of options and the reduction of costs arising directly from innovation itself, and the reduction of environmental damage, are far greater, perhaps by orders of magnitude, than the traditional cost–benefit models used for the analysis of climate change mitigation. The analysis suggests why a focus on discovery and innovation offers a promising way forward for national and international policies on climate change.


2013 ◽  
Vol 04 (supp01) ◽  
pp. 1340003 ◽  
Author(s):  
SERGEY PALTSEV ◽  
PANTELIS CAPROS

Major cost concepts used for evaluation of carbon policy are considered, including change in GDP, change in consumption, change in welfare, energy system cost, and area under marginal abatement cost (MAC) curve. The issues associated with the use of these concepts are discussed. We use the results from the models that participated in the European Energy Modeling Forum (EMF28) study to illustrate the cost concepts. There is substantial variability in the estimates of costs between the models, with some models showing substantial costs and some models reporting benefits from mitigation in some scenarios. Because impacts of a policy are evaluated as changes from a reference scenario, it is important to define a reference scenario. MAC cost measures tend to exclude existing distortions in the economy, while existing energy taxes and subsidies are substantial in many countries. We discuss that carbon prices are inadequate measures of the policy costs. We conclude that changes in macroeconomic consumption or welfare are the most appropriate measures of policy costs.


Sign in / Sign up

Export Citation Format

Share Document