scholarly journals A Unified Theory of All the Fields in Elementary Particle Physics Derived Solely from the Zero-Point Energy in Quantized Spacetime

Author(s):  
Shinichi Ishiguri

We propose a new theory beyond the standard model of elementary-particle physics. Employing the concept of a quantized spacetime, our theory demonstrates that the zero-point energy of the vacuum alone is sufficient to create all the fields, including gravity, the static electromagnetic field, and the weak and strong interactions. No serious undetermined parameters are assumed. Furthermore, the relations between the forces at the quantum-mechanics level is made clear. Using these relations, we quantize Einstein’s gravitational equation and explain the Dark Energy in our universe. Beginning with the zero-point energy of the vacuum, and after quantizing Newtonian gravity, we combine the energies of a static electromagnetic field and gravity in a quantum spacetime. Applying these results to the Einstein gravity equation, we substitute the energy density derived from the zero-point energy in addition to redefining differentials in a quantized spacetime. We thus derive the quantized Einstein gravitational equation without assuming the existence of macroscopic masses. This also explains the existence of the Dark Energy in the universe. For the weak interaction, by considering plane-wave electron and the zero-point energy, we obtain a wavefunction that represents a β collapse. In this process, from a different point of view than Weinberg-Salam theory, we derive the masses of the W and Z bosons and the neutrino, and we calculate the radius of the neutron. For the strong interaction, we previously reported an analytical theory for calculating the mass of a proton by considering a specific linear attractive potential obtained from the zero-point energy, which agrees well with the measurements. In the present study, we calculate the strong interaction between two nucleons, i.e., the mass of the pi-meson. The resulting calculated quantities agree with the measurements, which verifies our proposed theory.

1995 ◽  
Vol 10 (36) ◽  
pp. 2793-2800 ◽  
Author(s):  
I. BREVIK

The fundamental electric and magnetic modes are determined for an electromagnetic field contained in a spherical annular region a<r<b, filled with a medium of constant permittivity and permeability. The surfaces r=a and r=b are perfectly conducting. Knowledge about the mode spectrum enables one to calculate the zero-point energy in a very simple way, by means of a contour integration method.


2012 ◽  
Vol 79 (3) ◽  
pp. 327-334 ◽  
Author(s):  
BO LEHNERT

AbstractAn attempt is made to explain dark energy and dark matter of the expanding universe in terms of the zero point vacuum energy. This analysis is mainly limited to later stages of an observable nearly flat universe. It is based on a revised formulation of the spectral distribution of the zero point energy, for an ensemble in a defined statistical equilibrium having finite total energy density. The steady and dynamic states are studied for a spherical cloud of zero point energy photons. The ‘antigravitational’ force due to its pressure gradient then represents dark energy, and its gravitational force due to the energy density represents dark matter. Four fundamental results come out of the theory. First, the lack of emitted radiation becomes reconcilable with the concepts of dark energy and dark matter. Second, the crucial coincidence problem of equal orders of magnitude of mass density and vacuum energy density cannot be explained by the cosmological constant, but is resolved by the present variable concepts, which originate from the same photon gas balance. Third, the present approach becomes reconcilable with cosmical dimensions and with the radius of the observable universe. Fourth, the deduced acceleration of the expansion agrees with the observed one. In addition, mass polarity of a generalized gravitation law for matter and antimatter is proposed as a source of dark flow.


2015 ◽  
Vol 5 ◽  
pp. 1-8
Author(s):  
J.A. de Wet

This Review covers over 40 years of research on using the algebras of Quarternions E6;E8to model Elementary Particle physics. In particular the Binary Icosahedral group is isomorphic to theExceptional Lie algebra E8 by the MacKay correspondence. And the toric graph of E8 in Fig.2 with240 vertices on 4 binary Riemann surfaces each carrying 60 vertices, models a solution of the Ernstequation for the stationary symmetric Einstein gravitational equation. Furthermore the 15 synthemesof E8, consisting of 5 sets of 3,can be identified with algebraic representations of the nucleon,supersymmetric particles,W bosons and Dark Matter.


2006 ◽  
Vol 15 (12) ◽  
pp. 1987-2010 ◽  
Author(s):  
G. E. VOLOVIK

We discuss the main myths related to the vacuum energy and cosmological constant, such as: "unbearable lightness of space–time"; the dominating contribution of zero-point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition; zero-point energy of the vacuum between the plates in Casimir effect must gravitate, that is why the zero-point energy in the vacuum outside the plates must also gravitate; etc. All these and some other conjectures appear to be wrong when one considers the thermodynamics of the ground state of the quantum many-body system, which mimics macroscopic thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet divergence of the zero-point energy, the natural value of the vacuum energy is comparable with the observed dark energy. That is why the vacuum energy is the plausible candidate for the dark energy.


Author(s):  
Andrew Beckwith

We reduplicate the Book &ldquo;Dark Energy&rdquo; by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected &ldquo;length&rsquo; added to the &lsquo;width&rsquo; of a graviton wave just prior to specifying the creation of &lsquo;gravitons&rsquo;, while using Karen Freeze&rsquo;s criteria as to the breakup of primordial black holes to give radiation era contributions to GW generation. The GW generation will be when there is sufficient early universe density so as to break apart Relic Black holes of the order of Planck mass (10^15 grams) which isabout when the mass of relic black holes is created, 10^-27 or so seconds after expansion starts. Need to state a key result will be in the initial potential V calculated, in terms of other input variables


Sign in / Sign up

Export Citation Format

Share Document