scholarly journals Is There Water Ice in the Lunar Polar Craters?

Author(s):  
Tianxi Sun

This literature review found that it is doubtful that there is water ice in the polar craters on the Moon. In the course of this review, the following findings were found: (1) The absorption strength of hydroxyl radicals and hydroxyl groups are all 2.9μm, so it is easy to confuse hydroxyl radicals and hydroxyl groups when interpreting M3 spectra data. I do not doubt the ability of LCROSS to detect OH from water, but only suspect that LCROSS is unable to distinguish between hydroxyl radicals from water ice and hydroxyl groups from Moon's methanol due to ignore their spectral identity; (2) The water brought by comets and asteroids and the one caused by solar wind has been exhausted by reacts with the widespread methanol on the Moon in the presence of Pt/α-MoC or Pt/C catalysts. These reacts form large amount of hydrogen, thus clarifying a question NASA raised that "Scientists have long speculated about the source of vast quantities of hydrogen that have been observed at the lunar poles"; (3) The vast quantities of hydrogen in lunar polar craters at extremely low temperatures might be in liquid or solid state now, easy to confuse with water ice. It seems that all our previous misconceptions about water ice in the lunar polar craters might be due to the neglect of the widespread chemical role of lunar methanol. It is necessary to conduct in-depth research in this field in the future.

Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


2019 ◽  
Vol 116 (23) ◽  
pp. 11165-11170 ◽  
Author(s):  
Cheng Zhu ◽  
Parker B. Crandall ◽  
Jeffrey J. Gillis-Davis ◽  
Hope A. Ishii ◽  
John P. Bradley ◽  
...  

The source of water (H2O) and hydroxyl radicals (OH), identified on the lunar surface, represents a fundamental, unsolved puzzle. The interaction of solar-wind protons with silicates and oxides has been proposed as a key mechanism, but laboratory experiments yield conflicting results that suggest that proton implantation alone is insufficient to generate and liberate water. Here, we demonstrate in laboratory simulation experiments combined with imaging studies that water can be efficiently generated and released through rapid energetic heating like micrometeorite impacts into anhydrous silicates implanted with solar-wind protons. These synergistic effects of solar-wind protons and micrometeorites liberate water at mineral temperatures from 10 to 300 K via vesicles, thus providing evidence of a key mechanism to synthesize water in silicates and advancing our understanding on the origin of water as detected on the Moon and other airless bodies in our solar system such as Mercury and asteroids.


1951 ◽  
Vol 4 (2) ◽  
pp. 213 ◽  
Author(s):  
RL Meakins ◽  
RA Sack

Symmetrical long-chain secondary alcohols in the solid state show very high dielectric loss at audio and radio frequencies. This can be explained by the presence of chains of hydroxyl groups linked by hydrogen bonding and capable of reversing their direction. Further evidence of hydrogen bonding is provided by a study of the melting points of the secondary alcohols and related compounds. The amount of dielectric loss depends markedly on the manner of formation of the solid, being smallest for samples formed by recrystallization from solvents at low temperatures and largest for specimens obtained by slow cooling from the melt. The alcohols of molecular chain-lengths of 13, 15,17, and 19 carbon atoms show a considerable decrease of absorption on storing at room temperature. For alcohols of between 23 and 43 carbon atoms the loss is rather smaller with a peak at higher frequencies, but remains more constant in time. These results are interpreted in terms of competing influences of van der Waals forces and hydrogen bonds during crystal formation ; the former, which lead to a structure unsuitable for the formation of hydrogen-bond chains, are predominant at low temperatures, but become more rapidly neutralized by thermal motion, especially for the shorter molecules. The high temperature modification of the lower homologues is unstable at room temperature, and a molecular diffusion process causes the bond chains to break. Dilute systems of secondary alcohols with hydrocarbons or paraffin wax of similar molecular chain-length show very small dielectric loss suggesting a solid solution in which bond chains cannot be formed ; if the paraffin molecules are appreciably longer, the absorption is large and decreases on storing, presumably owing to the presence of a pure alcohol phase. I.


2021 ◽  
Vol 54 (3) ◽  
pp. 471-480
Author(s):  
Masashi Tsuge ◽  
Naoki Watanabe

Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 157
Author(s):  
Francesco Nozzoli ◽  
Pietro Richelli

The “Moon Mapping” project is a collaboration between the Italian and Chinese Governments allowing cooperation and exchange between students from both countries. The main aim of the project is to analyze remotely-sensed data collected by the Chinese space missions Chang’E-1/2 over the Moon surface. The Italian Space Agency is responsible for the Italian side and the Center of Space Exploration, while the China Ministry of Education is responsible for the Chinese side. In this article, we summarize the results of the “Moon Mappining” project topic #1: “map of the solar wind ion” using the data collected by Chang’E-1 satellite. Chang’E-1 is a lunar orbiter, its revolution period lasts 2 h, and its orbit is polar. The satellite is equipped with two Solar Wind Ion Detectors (SWIDs) that are two perpendicular electrostatic spectrometers mapping the sky with a field of view of 15° × 6.7° × 24 ch. The spectrometers can measure solar wind flux in the range 40 eV/q–17 keV/q with an energy resolution of 8% and time resolution of ∼3 s. The data collected by the two Solar Wind Ion Detectors are analyzed to characterize the solar wind flux and composition on the Moon surface and to study the time variations due to the solar activity. The data measured by Chang’E-1 compared with the one measured in the same period by the electrostatic spectrometers onboard the ACE satellite, or with another solar activity indicator as the sunspot number, enrich the multi-messenger/multi-particle view of the Sun, gathering valuable information about the space weather outside the Earth magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document