scholarly journals Secure Boot for Reconfigurable Architectures

Author(s):  
Ali Shuja Siddiqui ◽  
Yutian Gui ◽  
Fareena Saqib

Reconfigurable computing is becoming ubiquitous in the form of consumer-based Internet of Things (IoT) devices. Reconfigurable computing architectures have found their place in safety-critical infrastructures such as the automotive industry. As the target architecture evolves, it also needs to be updated remotely on the target platform. This process is susceptible to remote hijacking, where the attacker can maliciously update the reconfigurable hardware target with tainted hardware configuration. This paper proposes an architecture of establishing Root of Trust at the hardware level using cryptographic co-processors and Trusted Platform Modules (TPMs) and enable over the air updates. The proposed framework implements secure boot protocol on Xilinx based FPGAs. The project demonstrates the configuration of the bitstream, boot process integration with TPM and secure over-the-air updates for the hardware reconfiguration.

Cryptography ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 26
Author(s):  
Ali Shuja Siddiqui ◽  
Yutian Gui ◽  
Fareena Saqib

Reconfigurable computing is becoming ubiquitous in the form of consumer-based Internet of Things (IoT) devices. Reconfigurable computing architectures have found their place in safety-critical infrastructures such as the automotive industry. As the target architecture evolves, it also needs to be updated remotely on the target platform. This process is susceptible to remote hijacking, where the attacker can maliciously update the reconfigurable hardware target with tainted hardware configuration. This paper proposes an architecture of establishing Root of Trust at the hardware level using cryptographic co-processors and Trusted Platform Modules (TPMs) and enable over the air updates. The proposed framework implements a secure boot protocol on Xilinx based FPGAs. The project demonstrates the configuration of the bitstream, boot process integration with TPM and secure over-the-air updates for the hardware reconfiguration.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 5012
Author(s):  
Janusz Furtak

Designers and users of the Internet of Things (IoT) are devoting more and more attention to the issues of security and privacy as well as the integration of data coming from various areas. A critical element of cooperation is building mutual trust and secure data exchange. Because IoT devices usually have small memory resources, limited computing power, and limited energy resources, it is often impossible to effectively use a well-known solution based on the Certification Authority. This article describes the concept of the system for a cryptographic Key Generating and Renewing system (KGR). The concept of the solution is based on the use of the hardware Trusted Platform Module (TPM) v2.0 to support the procedures of creating trust structures, generating keys, protecting stored data, and securing data exchange between system nodes. The main tasks of the system are the secure distribution of a new symmetric key and renewal of an expired key for data exchange parties. The KGR system is especially designed for clusters of the IoT nodes but can also be used by other systems. A service based on the Message Queuing Telemetry Transport (MQTT) protocol will be used to exchange data between nodes of the KGR system.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2797 ◽  
Author(s):  
Furtak ◽  
Zieliński ◽  
Chudzikiewicz

Application of the Internet of Things (IoT) in some critical areas (e.g., military) is limited mainly due to the lack of robust, secure, and trusted measures needed to ensure the availability, confidentiality, and integrity of information throughout its lifecycle. Considering the mostly limited resources of IoT devices connected by wireless networks and their dynamic placement in unsupervised or even hostile environments, security is a complex and considerable issue. In this paper, a framework which encompasses an approach to integrate some security measures to build a so-called “secure domain of sensors nodes” is proposed. The framework is based on the use of the Trusted Platform Modules (TPMs) in wireless sensor nodes. It encompasses an architecture of sensor nodes, their roles in the domain, and the data structures as well as the developed procedures which could be applied to generate the credentials for the sensor nodes, and subsequently, to build a local trust structure of each node as well as to build a trust relationship between a domain’s nodes. The proposed solution ensures the authentication of sensor nodes and their resistance against unauthorized impact with the hardware/software configuration allowing protection against malware that can infect the software. The usefulness of the presented framework was confirmed experimentally.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 111 ◽  
Author(s):  
Daniel Oliveira ◽  
Miguel Costa ◽  
Sandro Pinto ◽  
Tiago Gomes

Undeniably, the Internet of Things (IoT) ecosystem continues to evolve at a breakneck pace, exceeding all growth expectations and ubiquity barriers. From sensor to cloud, this giant network keeps breaking technological bounds in several domains, and wireless sensor nodes (motes) are expected to be predominant as the number of IoT devices grows towards the trillions. However, their future in the IoT ecosystem still seems foggy, where several challenges, such as (i) device’s connectivity, (ii) intelligence at the edge, (iii) security and privacy concerns, and (iv) growing energy needs, keep pulling in opposite directions. This prospective paper offers a succinct and forward-looking review of recent trends, challenges, and state-of-the-art solutions of low-end IoT motes, where reconfigurable computing technology plays a key role in tomorrow’s IoT devices.


Author(s):  
Salvatore Gaglio ◽  
Leonardo Giuliana ◽  
Giuseppe Lo Re ◽  
Gloria Martorella ◽  
Antonio Montalto ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 669
Author(s):  
João D. Lopes ◽  
Mário P. Véstias ◽  
Rui Policarpo Duarte  ◽  
Horácio C. Neto ◽  
José T. de Sousa 

Reconfigurable computing architectures allow the adaptation of the underlying datapath to the algorithm. The granularity of the datapath elements and data width determines the granularity of the architecture and its programming flexibility. Coarse-grained architectures have shown the right balance between programmability and performance. This paper provides an overview of coarse-grained reconfigurable architectures and describes Versat, a Coarse-Grained Reconfigurable Array (CGRA) with self-generated partial reconfiguration, presented as a case study for better understanding these architectures. Unlike most of the existing approaches, which mainly use pre-compiled configurations, a Versat program can generate and apply myriads of on-the-fly configurations. Partial reconfiguration plays a central role in this approach, as it speeds up the generation of incrementally different configurations. The reconfigurable array has a complete graph topology, which yields unprecedented programmability, including assembly programming. Besides being useful for optimising programs, assembly programming is invaluable for working around post-silicon hardware, software, or compiler issues. Results on core area, frequency, power, and performance running different codes are presented and compared to other implementations.


Author(s):  
W. T. Donlon ◽  
J. E. Allison ◽  
S. Shinozaki

Light weight materials which possess high strength and durability are being utilized by the automotive industry to increase fuel economy. Rapidly solidified (RS) Al alloys are currently being extensively studied for this purpose. In this investigation the microstructure of an extruded Al-8Fe-2Mo alloy, produced by Pratt & Whitney Aircraft, Goverment Products Div. was examined in a JE0L 2000FX AEM. Both electropolished thin sections, and extraction replicas were examined to characterize this material. The consolidation procedure for producing this material included a 9:1 extrusion at 340°C followed by a 16:1 extrusion at 400°C, utilizing RS powders which have also been characterized utilizing electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document