scholarly journals Transformation Kinetics of Burnt Lime in Freshwater and Sea Water

Author(s):  
Harald Justnes ◽  
Carlos Escudero-Oñate ◽  
Øyvind Aaberg Garmo ◽  
Martin Mengede

The reaction kinetics of burnt lime (CaO) in contact with sea water has been elucidated and compared to its behaviour in fresh water. In the first minutes of contact between burnt lime and water, it "slaked" as CaO reacted with water to yield calcium hydroxide (Ca(OH)2). Subsequently, calcium hydroxide reacted with magnesium, sulphate and carbonate from the sea water to yield magnesium hydroxide (Mg(OH)2), calcium sulphate dihydrate (gypsum, CaSO4·2H2O) and calcium carbonate (CaCO3), respectively. In a closed system of 1% CaO in natural sea water (where the supply of sulphate, magnesium and carbonate is limited), more than 90% reacted within the first 5 hours. It is foreseen that in an open system, like a marine fjord, it will react even faster. The pH 8 of sea water close to the CaO particle surface will immediately increase to a theoretical value of about 12.5 but will, in an open system with large excess of sea water, rapidly fall back to pH 10.5 being equilibrium pH of magnesium hydroxide. This is further reduced to < 9 due to the common ion effect of dissolved magnesium in sea water and then be diluted to the sea water background pH, about 8. Field test dosing CaO particles to sea water showed that the pH of water between the particles stayed around 8.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4926
Author(s):  
Harald Justnes ◽  
Carlos Escudero-Oñate ◽  
Øyvind Aaberg Garmo ◽  
Martin Mengede

Calcium oxide (CaO), also known as burnt lime, is being considered as a possible treatment to reduce the negative impact of sea urchins on tare forests in northern coastal waters and blue-green algal blooms in the surrounding of fish-farms. In this respect, the reaction kinetics of burnt lime in contact with sea water has been elucidated and compared to its behaviour in fresh water. In the first minutes of contact between burnt lime and water, it “slaked” as CaO reacted with water to yield calcium hydroxide (Ca(OH)2). Subsequently, calcium hydroxide reacted with magnesium, sulphate and carbonate from the sea water to yield magnesium hydroxide (Mg(OH)2), calcium sulphate dihydrate (gypsum, CaSO4·2H2O) and calcium carbonate (CaCO3), respectively. In a closed system of 1% CaO in natural sea water (where the supply of sulphate, magnesium and carbonate is limited), more than 90% reacted within the first 5 h. It is foreseen that in an open system, like a marine fjord, it will react even faster. The pH 8 of sea water close to the CaO particle surface will immediately increase to a theoretical value of about 12.5 but will, in an open system with large excess of sea water, rapidly fall back to pH 10.5 being equilibrium pH of magnesium hydroxide. This is further reduced to <9 due to the common ion effect of dissolved magnesium in sea water and then be diluted to the sea water background pH, about 8. Field test dosing CaO particles to sea water showed that the pH of water between the particles stayed around 8.


Author(s):  
A. L. Lebedev ◽  
I. V. Avilina

Experimental study of kinetics of dissolution of hypso anhydrites at 25 ᵒC made it possible to formulate model of the process in the form of a balance equation for the kinetics of dissolution of gypsum, anhydrite (first and second orders, respectively) and kinetics of precipitation of gypsum (second order). The processing of the experimental data were carried out on the basis of the solution of the Riccati equation. When taking into account the common-ion effect on the solubility of gypsum and anhydrite, the calculated values turned out to be more comparable with the experimental ones.


1967 ◽  
Vol 45 (16) ◽  
pp. 1821-1824 ◽  
Author(s):  
S. Bywater ◽  
D. J. Worsfold

The kinetics of the propagation reaction in the polymerization of isoprene initiated by butyllithium in tetrahydrofuran solution have been studied. The kinetic behavior has indicated that the reactive species involves both the polyisoprenyllithium ion-pair and the free poly-isoprenyl carbanion. The conductances of solutions of polyisoprenyllithium have been measured and the ionic dissociation constant derived. From these the free ion rate constant has been evaluated. It has also been shown that the free ion reaction may be suppressed by the common ion effect when the salt lithium tetraphenylboron is added. The rate constants for the ion-pair and free ion are 0.20 M−1 s−1 and 2.8 × 103 M−l s−1 respectively; the ionic dissociation constant is 5.0 × 10−10. Nuclear magnetic resonance determinations of the structures of the polymers formed primarily by the free carbanion, and by the ion-pair only, show that the lithium ion has only a small directing effect.


2011 ◽  
Vol 63 (8) ◽  
pp. 1629-1637 ◽  
Author(s):  
N. Harouiya ◽  
S. Martin Rue ◽  
S. Prost-Boucle ◽  
A. Liénar ◽  
D. Esser ◽  
...  

Phosphorus (P) removals in constructed wetlands (CWs) have received particular attention in recent decades by using specific materials which promote adsorption/precipitation mechanisms. Recent studies have shown interest in using apatite materials to promote P precipitation onto the particle surface. As previous trials were mainly done by lab experiments, this present study aims to evaluate the real potential of apatites to remove P from wastewater in pilot units and a full-scale plant over a 2 year period. P retention kinetics of two qualities of apatites are presented and discussed. In this work apatite appears to have high retention capacity (&gt;80% of P removal) and is still an interesting way for P removal in CWs for limiting the risk of eutrophication downstream of small communities. Nevertheless, the apatite quality appears to be of great importance for a reliable and long term P removal. The use of materials with low content of apatite mineral (40–50%) seems to be not economically relevant.


1937 ◽  
Vol 20 (5) ◽  
pp. 737-766 ◽  
Author(s):  
A. G. Jacques

When 0.1 M NaI is added to the sea water surrounding Valonia iodide appears in the sap, presumably entering as NaI, KI, and HI. As the rate of entrance is not affected by changes in the external pH we conclude that the rate of entrance of HI is negligible in comparison with that of NaI, whose concentration is about 107 times that of HI (the entrance of KI may be neglected for reasons stated). This is in marked contrast with the behavior of sulfide which enters chiefly as H2S. It would seem that permeability to H2S is enormously greater than to Na2S. Similar considerations apply to CO2. In this respect the situation differs greatly from that found with iodide. NaI enters because its activity is greater outside than inside so that no energy need be supplied by the cell. The rate of entrance (i.e. the amount of iodide entering the sap in a given time) is proportional to the external concentration of iodide, or to the external product [N+]o [I-lo, after a certain external concentration of iodide has been reached. At lower concentrations the rate is relatively rapid. The reasons for this are discussed. The rate of passage of NaI through protoplasm is about a million times slower than through water. As the protoplasm is mostly water we may suppose that the delay is due chiefly to the non-aqueous protoplasmic surface layers. It would seem that these must be more than one molecule thick to bring this about. There is no great difference between the rate of entrance in the dark and in the light.


Sign in / Sign up

Export Citation Format

Share Document