scholarly journals Cosmic Ray Extremely Distributed Observatory

Author(s):  
Piotr Homola ◽  
Dmitriy Beznosko ◽  
Gopal Bhatta ◽  
Łukasz Bibrzycki ◽  
Łukasz Bratek ◽  
...  

The Cosmic Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic ray ensembles (CRE): groups of a minimum of two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g. as products of photon-photon interactions), and exotic scenarios (e.g. as results of decay of Super Heavy Dark Matter particles), their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic ray energy spectrum. CRE are expected to be partially observable on Earth even if the initiating interaction or process occurs as far as ~1 Gpc away. They would have a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. Since CRE are mostly expected to be spread over large areas and, because of the expected wide energy range of the contributing particles, CRE detection might only be feasible when using available cosmic ray infrastructure collectively, i.e. as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE, and in particular to share any cosmic ray data useful for the specific CRE detection strategies.

Author(s):  
Piotr Homola ◽  
Dmitriy Beznosko ◽  
Gopal Bhatta ◽  
Łukasz Bibrzycki ◽  
Łukasz Bratek ◽  
...  

The Cosmic Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic ray ensembles (CRE): groups of a minimum of two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g. as products of photon-photon interactions), and exotic scenarios (e.g. as results of decay of Super Heavy Dark Matter particles), their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic ray energy spectrum. CRE are expected to be partially observable on Earth even if the initiating interaction or process occurs as far as ~1 Gpc away. They would have a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. Since CRE are mostly expected to be spread over large areas and, because of the expected wide energy range of the contributing particles, CRE detection might only be feasible when using available cosmic ray infrastructure collectively, i.e. as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE, and in particular to share any cosmic ray data useful for the specific CRE detection strategies.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1835
Author(s):  
Piotr Homola ◽  
Dmitriy Beznosko ◽  
Gopal Bhatta ◽  
Łukasz Bibrzycki ◽  
Michalina Borczyńska ◽  
...  

The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic-ray ensembles (CRE): groups of at least two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g., as products of photon–photon interactions), and exotic scenarios (e.g., as results of decay of Super-Heavy Dark Matter particles). Their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic-ray energy spectrum, with a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. As the CRE are predominantly expected to be spread over large areas and, due to the expected wide energy range of the contributing particles, such a CRE detection might only be feasible when using all available cosmic-ray infrastructure collectively, i.e., as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE and, in particular, to pool together cosmic-ray data to support specific CRE detection strategies.


2013 ◽  
Vol 22 (11) ◽  
pp. 1360002
Author(s):  
◽  
MARCO CASOLINO

PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV–700 GeV, electrons 50 MeV–400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV–190 GeV), positrons (50 MeV–270 GeV) and search for antimatter with a precision of the order of 10-8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15 2006 in a 350 × 600 km orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we present some of its scientific results in its first five years of operation.


2013 ◽  
Vol 53 (A) ◽  
pp. 712-717
Author(s):  
A. Bruno ◽  
O. Adriani ◽  
G. C. Barbarino ◽  
G. A. Bazilevskaya ◽  
R. Bellotti ◽  
...  

The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium), and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.


1978 ◽  
Vol 10 (4) ◽  
pp. 730-735
Author(s):  
H. S. Green

The theoretical analyses of the extensive air showers developing from the cosmic radiation has its origins in the work of Carlson and Oppenheimer (1937) and Bhabha and Heitler (1937), at a time when it was thought that such showers were initiated by electrons. The realization that protons and other nuclei were the primary particles led to a reformulation of the theory by Heitler and Janossy (1949), Messel and Green (1952) and others, in which the production of energetic pions and the three-dimensional development of air showers were accounted for. But as the soft (electromagnetic) component of the cosmic radiation is the most prominent feature of air showers at sea level, there has been a sustained interest in the theory of this component. Most of the more recent work, such as that by Butcher and Messel (1960) and Thielheim and Zöllner (1972) has relied on computer simulation; but this method has disadvantages in terms of accuracy and presentation of results, especially where a simultaneous analysis of the development of air showers in terms of several physical variables is required. This is so for instance when the time of arrival is one of the variables. Moyal (1956) played an important part in the analytical formulation of a stochastic theory of cosmic ray showers, with time as an explicit variable, and it is essentially this approach which will be adopted in the following. The actual distribution of arrival times is cosmic ray showers, for which results are obtained, is of current experimental interest (McDonald, Clay and Prescott (1977)).


2017 ◽  
Vol 3 (1) ◽  
pp. 63-78
Author(s):  
Сардаана Герасимова ◽  
Sardaana Gerasimova ◽  
Петр Гололобов ◽  
Peter Gololobov ◽  
Владислав Григорьев ◽  
...  

This paper presents the basic model of cosmic ray modulation in the heliosphere, developed in Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of RAS. The model has only one free modulation parameter: the ratio of the regular magnetic field to the turbulent one. It may also be applied to the description of cosmic ray intensity variations in a wide energy range from 100 MeV to 100 GeV. Possible mechanisms of generation of the mentioned turbulence field are considered. The primary assumption about the electrical neutrality of the heliosphere appears to be wrong, and the zero potential needed to match the model with observations in the plane of the solar equator can be achieved if the frontal point of the heliosphere, which is flowed around by interstellar gas, lies near the mentioned plane. We have revealed that the abnormal rise of cosmic ray intensity at the end of solar cycle 23 is related to the residual modulation produced by the subsonic solar wind behind the front of a standing shock wave. The model is used to describe features of cosmic ray intensity variations in several solar activity cycles.


2019 ◽  
Vol 197 ◽  
pp. 02001
Author(s):  
Bianca Keilhauer

The Pierre Auger Observatory for detecting ultrahigh energy cosmic rays has been founded in 1999. After a main planning and construction phase of about five years, the regular data taking started in 2004, but it took another four years until the full surface detector array was deployed. In parallel to the main detectors of the Observatory, a comprehensive set of instruments for monitoring the atmospheric conditions above the array was developed and installed as varying atmospheric conditions influence the development and detection of extensive air showers. The multitude of atmospheric monitoring installations at the Pierre Auger Observatory will be presented as well as the challenges and efforts to run such instruments for several decades.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 192-196 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

The CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale.


1997 ◽  
Vol 39 (4) ◽  
pp. 465-468 ◽  
Author(s):  
W Unno ◽  
S Ohara ◽  
K Urata ◽  
I Masaki ◽  
T Kitamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document