scholarly journals Efficient Spectrum Occupancy Prediction Exploiting Multidimensional Correlations through Composite 2D-LSTM Models

Author(s):  
Mehmet Ali Aygül ◽  
Mahmoud Nazzal ◽  
Mehmet İzzet Sağlam ◽  
Daniel Benevides da Costa ◽  
Hasan Fehmi Ateş ◽  
...  

In cognitive radio systems, identifying spectrum opportunities is fundamental to efficiently use the spectrum. Spectrum occupancy prediction is a convenient way of revealing opportunities based on previous occupancies. Studies have demonstrated that usage of the spectrum has a high correlation over multidimensions which includes time, frequency, and space. Accordingly, recent literature uses tensor-based methods to exploit the multidimensional spectrum correlation. However, these methods share two main drawbacks. First, they are computationally complex. Second, they need to re-train the overall model when no information is received from any base station for any reason. Different than the existing works, this paper proposes a method for dividing the multidimensional correlation exploitation problem into a set of smaller sub-problems. This division is achieved through composite two-dimensional (2D)-long short-term memory (LSTM) models. Extensive experimental results reveal a high detection performance with more robustness and less complexity attained by the proposed method. The real-world measurements provided by one of the leading mobile network operators in Turkey validate these results.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 135
Author(s):  
Mehmet Ali Aygül ◽  
Mahmoud Nazzal ◽  
Mehmet İzzet Sağlam ◽  
Daniel Benevides da Costa ◽  
Hasan Fehmi Ateş ◽  
...  

In cognitive radio systems, identifying spectrum opportunities is fundamental to efficiently use the spectrum. Spectrum occupancy prediction is a convenient way of revealing opportunities based on previous occupancies. Studies have demonstrated that usage of the spectrum has a high correlation over multidimensions, which includes time, frequency, and space. Accordingly, recent literature uses tensor-based methods to exploit the multidimensional spectrum correlation. However, these methods share two main drawbacks. First, they are computationally complex. Second, they need to re-train the overall model when no information is received from any base station for any reason. Different than the existing works, this paper proposes a method for dividing the multidimensional correlation exploitation problem into a set of smaller sub-problems. This division is achieved through composite two-dimensional (2D)-long short-term memory (LSTM) models. Extensive experimental results reveal a high detection performance with more robustness and less complexity attained by the proposed method. The real-world measurements provided by one of the leading mobile network operators in Turkey validate these results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractImage analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the time-frequency time-space long short-term memory network (TF-TS LSTM) developed for classification of time series is applied for classifying histopathological images. The deep learning is empowered by the use of sequential time-frequency and time-space features extracted from the images. Furthermore, unlike conventional classification practice, a strategy for class modeling is designed to leverage the learning power of the TF-TS LSTM. Tests on several datasets of histopathological images of haematoxylin-and-eosin and immunohistochemistry stains demonstrate the strong capability of the artificial intelligence (AI)-based approach for producing very accurate classification results. The proposed approach has the potential to be an AI tool for robust classification of histopathological images.


2021 ◽  
Author(s):  
Jing Yuan ◽  
Zijie Wang ◽  
Dehe Yang ◽  
Qiao Wang ◽  
Zeren Zima ◽  
...  

<p>Lightning whistlers, found frequently in electromagnetic satellite observation, are the important tool to study electromagnetic environment of the earth space. With the increasing data from electromagnetic satellites, a considerable amount of time and human efforts are needed to detect lightning whistlers from these tremendous data. In recent years, algorithms for lightning whistlers automatic detection have been conducted. However, these methods can only work in the time-frequency profile (image) of the electromagnetic satellites data with two major limitations: vast storage memory for the time-frequency profile (image) and expensive computation for employing the methods to detect automatically the whistler from the time-frequency profile. These limitations hinder the methods work efficiently on ZH-1 satellite. To overcome the limitations and realize the real-time whistler detection automatically on board satellite, we propose a novel algorithm for detecting lightning whistler from the original observed data without transforming it to the time-frequency profile (image).</p><p>The motivation is that the frequency of lightning whistler is in the audio frequency range. It encourages us to utilize the speech recognition techniques to recognize the whistler in the original data \of SCM VLF Boarded on ZH-1. Firstly, we averagely move a 0.16 seconds window on the original data to obtain the patch data as the audio clip. Secondly, we extract the Mel-frequency cepstral coefficients (MFCCs) of the patch data as a type of cepstral representation of the audio clip. Thirdly, the MFCCs are input to the Long Short-Term Memory (LSTM) recurrent neutral networks to classification. To evaluate the proposed method, we construct the dataset composed of 10000 segments of SCM wave data observed from ZH-1 satellite(5000 segments which involving whistler and 5000 segments without any whistler). The proposed method can achieve 84% accuracy, 87% in recall, 85.6% in F1score.Furthermore, it can save more than 126.7MB and 0.82 seconds compared to the method employing the YOLOv3 neutral network for detecting whistler on each time-frequency profile.</p><p> </p><p>Key words: ZH-1 satellite, SCM,lightning whistler, MFCC, LSTM</p>


2020 ◽  
Vol 10 (12) ◽  
pp. 4335 ◽  
Author(s):  
Truong-Ngoc Tan ◽  
Ali Khenchaf ◽  
Fabrice Comblet ◽  
Pierre Franck ◽  
Jean-Marc Champeyroux ◽  
...  

In the recent years, multi-constellation and multi-frequency have improved the positioning precision in GNSS applications and significantly expanded the range of applications to new areas and services. However, the use of multiple signals presents advantages as well as disadvantages, since they may contain poor quality signals that negatively impact the position precision. The objective of this study is to improve the Single Point Positioning (SPP) accuracy using multi-GNSS data fusion. We propose the use of robust-Extended Kalman Filter (referred to as robust-EKF hereafter) to eliminate outliers. The robust-EKF used in the present work combines the Extended Kalman Filter with the Iterative ReWeighted Least Squares (IRWLS) and the Receiver Autonomous Integrity Monitoring (RAIM). The weight matrix in IRWLS is defined by the MM Estimation method which is a robust statistics approach for more efficient statistical data analysis with high breaking point. The RAIM algorithm is used to check the accuracy of the protection zone of the user. We apply the robust-EKF method along with the robust combination of GPS, Galileo and GLONASS data from ABMF base station, which significantly improves the position accuracy by about 84% compared to the non-robust data combination. ABMF station is a GNSS reception station managed by Météo-France in Guadeloupe. Thereafter, ABMF will refer to the acronym used to designate this station. Although robust-EKF demonstrates improvement in the position accuracy, its outputs might contain errors that are difficult to estimate. Therefore, an algorithm that can predetermine the error produced by robust-EKF is needed. For this purpose, the long short-term memory (LSTM) method is proposed as an adapted Deep Learning-Based approach. In this paper, LSTM is considered as a de-noising filter and the new method is proposed as a hybrid combination of robust-EKF and LSTM which is denoted rEKF-LSTM. The position precision greatly improves by about 95% compared to the non-robust combination of data from ABMF base station. In order to assess the rEKF-LSTM method, data from other base stations are tested. The position precision is enhanced by about 87%, 77% and 93% using the rEKF-LSTM compared to the non-robust combination of data from three other base stations AJAC, GRAC and LMMF in France, respectively.


Author(s):  
Abdulbaki Uzun ◽  
Eric Neidhardt ◽  
Axel Küpper

Mobile network operators maintain data about their mobile network topology, which is mainly used for network provisioning and planning purposes restricting its full business potential. Utilizing this data in combination with the extensive pool of semantically modeled data in the Linking Open Data Cloud, innovative applications can be realized that would establish network operators as service providers and enablers in the highly competitive services market. In this article, the authors introduce the OpenMobileNetwork (available at http://www.openmobilenetwork.org/) as an open solution for providing approximated network topology data based on the principles of Linked Data along with a business concept for network operators to exploit their valuable asset. Since the quality of the estimated network topology is crucial when providing services on top of it, the authors further analyze and evaluate state-of-the-art approaches for estimating base station positions out of crowdsourced data and discuss the results in comparison to real base station locations.


Sign in / Sign up

Export Citation Format

Share Document