scholarly journals Electronic, Magnetic and Optical Properties of XScO3 (X=Mo, W) Perovskites

Author(s):  
Amall Ramanathan ◽  
Jamil Khalifeh

Density Functional Theory (DFT) full potential linearized augmented plane wave (FP-LAPW) method with the Modified Becke-Johnson (mBJ) approximation is used to perform spin polarised calculations of the transition metal perovskites MoScO3 and WScO3. Both depict half metallic behaviour with semiconducting and metallic in the minority and majority spins respectively. MoScO3 and WScO3 have indirect R− Γ band gaps in the minority spin channels of 3.61 and 3.82eV respectively. Moreover, they both show substantial magnetic moments of 2.99μB. In addition, we calculate the dielectric function, optical conductivity and the optical constants, namely, the refractive index, the reflectivity, the extinction and absorption coefficients.

2021 ◽  
Vol 3 ◽  
pp. e15
Author(s):  
Amall Ahmed Ramanathan ◽  
Jamil Mahmoud Khalifeh

The density functional theory (DFT) full potential linearized augmented plane wave (FP-LAPW) method with the modified Becke–Johnson (mBJ) approximation is used to perform spin polarised calculations of the transition metal perovskites MoScO3 and WScO3. Both depict half metallic behaviour with semiconducting and metallic in the minority and majority spins respectively. MoScO3 and WScO3 have indirect R− Γ band gaps in the minority spin channels of 3.61 and 3.82 eV respectively. Moreover, they both show substantial integer magnetic moments of 3μB with 100% spin polarization typical to half metals. In addition, we calculate the dielectric function, optical conductivity and the optical constants, namely, the refractive index, the reflectivity, the extinction and absorption coefficients.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750033 ◽  
Author(s):  
A. A. Mubarak

This is an ab initio study instituted on the density functional theory (DFT) and the full-potential linearized augmented plane wave (FP-LAPW) calculations that are performed to analyze the mechanical, electronic, optical and thermoelectric properties of the cubic MCoF3 compound (M = K and Rb). The studied compounds are found thermodynamically and mechanically stable. Moreover, these compounds are found to be elastically anisotropic and ductile. KCoF3 and RbCoF3 are classified as half-metallic and anti-ferromagnetic compounds. The optical properties are investigated from the dielectric function for the different energy ranges. The thermoelectric properties such as transport properties are determined as a function of temperature using BoltzTrape code in the range of 20–800 K. The present compounds are found to have p-type character. Also, the majority charge carriers are found to be electrons rather than hole. Useful mechanical, spintronic, optical and thermoelectric applications are predicted based upon the calculations.


2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Amall A. Ramanathan

The electronic and optical properties of the newly synthesized molybdenum dinitride (MoN2) in the hypothetical 2H structure analogous to MoS2 is investigated using the density functional theory (DFT) full potential linearized augmented plane wave (FP-LAPW) method and the modified Becke–Johnson (mBJ) approximation. The aim is to investigate the optoelectronic properties of this compound for potential optical sensing applications and compare with the capabilities of MoS2 in this field. As compared to MoS2, which is a semiconductor, MoN2 is found to be a semi metal from the band structure plots. The dielectric function, optical conductivity and the optical constants, namely, the refractive index, the reflectivity, the extinction and absorption coefficients, are evaluated and compared with those of MoS2 and discussed with reference to the sensing performance.


2018 ◽  
Vol 32 (11) ◽  
pp. 1850129 ◽  
Author(s):  
Shahram Yalameha ◽  
Aminollah Vaez

In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0–1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.


Author(s):  
Deepika Shrivastava ◽  
Sankar P. Sanyal

The structural, electronic and elastic properties of CeTl with CsCl-type B2 structure have been investigated using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The ground state properties such as lattice constant, bulk modulus and pressure derivative of bulk modulus have been calculated which are in good agreement with available experimental data. The band structure and density of state depict that 4f electrons of Ce element have dominant character in electronic conduction and are responsible for metallic character of CeTl. The charge density plot reveals that the metallic as well as ionic bonding exist between Ce and Tl atoms. The calculated elastic constants indicate that CeTl is mechanically stable in cubic B2 phase and found to be ductile in nature.


2002 ◽  
Vol 750 ◽  
Author(s):  
C. Stampfl ◽  
A. J. Freeman

ABSTRACTUsing density functional theory and the full-potential linearized augmented plane wave (FLAPW) method, we investigate the formation and stability, and atomic structure, of rocksalt AlN/TiN and AlN/VN systems, including properties of the clean surfaces of the constituent materials. Calculations of the adlayer formation energy highlights the effect and interplay of the various energetic contributions on the growth of these strained systems, where the so-called “surface-interface” interaction energy is found to be important for the initial stages of AlN epitaxy. A significant strain energy builds up for increasing number of layers, where it is greater in the AlN/TiN system, which limits the thickness of rocksalt AlN regions that can grow before a structural transition to the lower energy wurtzite phase takes place. From our calculations, together with the known experimental critical thicknesses, we can obtain an accurate estimate of the wurtzite/substrate interface energy. That these values are high explains why the metastable rocksalt phase, which has significantly lower interface energies, is stabilized.


1985 ◽  
Vol 63 ◽  
Author(s):  
Arthur J. Freeman ◽  
C. L. Fu ◽  
T. Oguchi

ABSTRACTAdvances in all-electron local density functional theory approaches to complex materials structure and properties made possible by the implementation of new computational/theoretical algorithms on supercomputers are exemplified in our full potential linearized augmented plane wave (FLAPW) method. In this total energy self-consistent approach, high numerical stability and precision (to 10 in the total energy) have been demonstrated in a study of the relaxation and reconstruction of transition metal surfaces. Here we demonstrate the predictive power of this method for describing the structural, magnetic and electronic properties of several systems (surfaces, overlayers, sandwiches, and superlattices).


2019 ◽  
Vol 297 ◽  
pp. 120-130 ◽  
Author(s):  
Abdelhakim Chadli ◽  
Mohamed Halit ◽  
Brahim Lagoun ◽  
Ferhat Mohamedi ◽  
Said Maabed ◽  
...  

The structural, elastic and anisotropic properties for rare earth manganites compound YMnO3 in ferromagnetic state with hexagonal structure, have been investigated using the ab initio calculations based on the density functional theory, this calculations were based on the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA). The agreement of the DFT (FP-LAPW) calculations including internal atomic relaxations, with the experimental data is very good. Other relevant quantities such as elastic constants, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factors, sound velocity, and Debye temperature have been calculated and discussed.


2014 ◽  
Vol 925 ◽  
pp. 390-395
Author(s):  
Noureddine Amrane ◽  
Maamar Benkraouda

We present a systematic and comparative study of the electronic properties of CeX monochalcogenides, The density of state (DOS) and electronic band structure of CeX (X=S, Se, Te) have been calculated using the full-potential linearized augmented plane-wave (FP-LAPW) + local orbital (lo) method based on the density functional theory (DFT), which is implemented in WIEN2k code. The trends in the high pressure behavior of these systems are discussed. Four approximations for the exchange-correlation functional have been used, the GGA's of Perdew-Burke-Ernzherhof. (PBE08) , Engel-Vosko (EV93), a modified version of the exchange potential proposed by Becke and Johnson (MBJ), and LDA+U is used to calculate the band gaps at different pressures. All methods allow for a description of the Ce f electrons as either localized or delocalized, it is found that the underestimations of the bandgap by means of LDA-GGA and Engel-Vosko are considerably improved by using the modified Becke-Johnson (MBJ) potential for all compounds in the series, On the other hand, LDA+U, method gives good results for the lighter chalcogenides, but it fails to give good results for the heavier cerium monochalcogenides.


2001 ◽  
Vol 691 ◽  
Author(s):  
Daniel I Bilc ◽  
Paul Larson ◽  
S.D. Mahanti ◽  
M.G. Kanatzidis

ABSTRACTK2Bi8 Se13 belongs to a class of complex Bi-Te-Se systems which show great potential for thermoelectric performance. This compound forms in two distinct phases α-K2Bi8 Se13 (triclinic with space group P-1) and β-K2Bi8 Se13 (monoclinic with space group P 21/m). In the β-phase, there is substantial disorder at four sites in the unit cell, occupied by two K and two Bi atoms. To understand the electronic properties of these two different phases we have carried out band structure calculations within ab initio density functional theory (DFT) using full potential linearized augmented plane wave (LAPW) method. The generalized gradient approximation (GGA) was used to treat the exchange and correlation potential. Spin-orbit interaction (SOI) was incorporated using a second variational procedure. The α. phase is found to be a semiconductor with an indirect band gap of 0.47eV. For the β-phase we have chosen two different ordered structures. The system is a semi-metal for one of the structures whereas for the other, it is a narrow gap semiconductor with a gap of 0.38eV in the absence of SOI, but the gap collapses and the system becomes a semimetal with low density of states at the Fermi energy when SOI is included.


Sign in / Sign up

Export Citation Format

Share Document