scholarly journals An Effective Heart Disease Prediction Model based on Machine Learning Techniques

Author(s):  
Rony Chowdhury Ripan ◽  
Iqbal H. Sarker ◽  
Md. Hasan Furhad ◽  
Md Musfique Anwar ◽  
Mohammed Moshiul Hoque

This paper presents an effective heart disease prediction model through detecting the anomalies, also known as outliers, in healthcare data using the unsupervised K-means clustering algorithm. Most existing approaches for detecting anomalies are based on constructing profiles of normal instances. However, such techniques require an adequate number of normal profiles to justify those models. Our proposed model first evaluates an \textit{optimal} value of K using Silhouette method. Next, it intends to locate anomalies that are far from a certain threshold distance with respect to their clusters. Finally, the five most popular classification techniques such as K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machines (SVM), Naive Bayes (NB), and Logistic Regression (LR) are applied to build the resultant prediction model. The effectiveness of the proposed methodology is justified using a benchmark dataset of heart disease.

Author(s):  
Ganesh Nanekar

Heart is the next major organ comparing to brain which has more priority in Human body. It pumps the blood and supplies to all organs of the whole body. Prediction of occurrences of heart diseases in medical field is significant work. Data analytics is useful for prediction from more information and it helps medical Centre to predict of various disease. Huge amount of patient related data is maintained on monthly basis. The stored data can be useful for source of predicting the occurrence of future disease. Some of the data mining and machine learning techniques are used to predict the heart disease, such as Decision tree, Fuzzy Logic, K-Nearest Neighbor (KNN), Naïve Bayes and Support Vector Machine (SVM). This paper provides an insight of the existing algorithms and implements hybrid algorithms to improve accuracy significantly.


Deriving the methodologies to detect heart issues at an earlier stage and intimating the patient to improve their health. To resolve this problem, we will use Machine Learning techniques to predict the incidence at an earlier stage. We have a tendency to use sure parameters like age, sex, height, weight, case history, smoking and alcohol consumption and test like pressure ,cholesterol, diabetes, ECG, ECHO for prediction. In machine learning there are many algorithms which will be used to solve this issue. The algorithms include K-Nearest Neighbour, Support vector classifier, decision tree classifier, logistic regression and Random Forest classifier. Using these parameters and algorithms we need to predict whether or not the patient has heart disease or not and recommend the patient to improve his/her health.


Author(s):  
Tssehay Admassu Assegie

<span>In this study, the author proposed k-nearest neighbor (KNN) based heart disease prediction model. The author conducted an experiment to evaluate the performance of the proposed model. Moreover, the result of the experimental evaluation of the predictive performance of the proposed model is analyzed. To conduct the study, the author obtained heart disease data from Kaggle machine learning data repository. The dataset consists of 1025 observations of which 499 or 48.68% is heart disease negative and 526 or 51.32% is heart disease positive. Finally, the performance of KNN algorithm is analyzed on the test set. The result of performance analysis on the experimental results on the Kaggle heart disease data repository shows that the accuracy of the KNN is 91.99%</span>


2020 ◽  
Vol 7 (2) ◽  
pp. 631-647
Author(s):  
Emrana Kabir Hashi ◽  
Md. Shahid Uz Zaman

Machine learning techniques are widely used in healthcare sectors to predict fatal diseases. The objective of this research was to develop and compare the performance of the traditional system with the proposed system that predicts the heart disease implementing the Logistic regression, K-nearest neighbor, Support vector machine, Decision tree, and Random Forest classification models. The proposed system helped to tune the hyperparameters using the grid search approach to the five mentioned classification algorithms. The performance of the heart disease prediction system is the major research issue. With the hyperparameter tuning model, it can be used to enhance the performance of the prediction models. The achievement of the traditional and proposed system was evaluated and compared in terms of accuracy, precision, recall, and F1 score. As the traditional system achieved accuracies between 81.97% and 90.16%., the proposed hyperparameter tuning model achieved accuracies in the range increased between 85.25% and 91.80%. These evaluations demonstrated that the proposed prediction approach is capable of achieving more accurate results compared with the traditional approach in predicting heart disease with the acquisition of feasible performance.


Author(s):  
Prince Golden ◽  
Kasturi Mojesh ◽  
Lakshmi Madhavi Devarapalli ◽  
Pabbidi Naga Suba Reddy ◽  
Srigiri Rajesh ◽  
...  

In this era of Cloud Computing and Machine Learning where every kind of work is getting automated through machine learning techniques running off of cloud servers to complete them more efficiently and quickly, what needs to be addressed is how we are changing our education systems and minimizing the troubles related to our education systems with all the advancements in technology. One of the the prominent issues in front of students has always been their graduate admissions and the colleges they should apply to. It has always been difficult to decide as to which university or college should they apply according to their marks obtained during their undergrad as not only it’s a tedious and time consuming thing to apply for number of universities at a single time but also expensive. Thus many machine learning solutions have emerged in the recent years to tackle this problem and provide various predictions, estimations and consultancies so that students can easily make their decisions about applying to the universities with higher chances of admission. In this paper, we review the machine learning techniques which are prevalent and provide accurate predictions regarding university admissions. We compare different regression models and machine learning methodologies such as, Random Forest, Linear Regression, Stacked Ensemble Learning, Support Vector Regression, Decision Trees, KNN(K-Nearest Neighbor) etc, used by other authors in their works and try to reach on a conclusion as to which technique will provide better accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shaker El-Sappagh ◽  
Tamer Abuhmed ◽  
Bader Alouffi ◽  
Radhya Sahal ◽  
Naglaa Abdelhade ◽  
...  

Early detection of Alzheimer’s disease (AD) progression is crucial for proper disease management. Most studies concentrate on neuroimaging data analysis of baseline visits only. They ignore the fact that AD is a chronic disease and patient’s data are naturally longitudinal. In addition, there are no studies that examine the effect of dementia medicines on the behavior of the disease. In this paper, we propose a machine learning-based architecture for early progression detection of AD based on multimodal data of AD drugs and cognitive scores data. We compare the performance of five popular machine learning techniques including support vector machine, random forest, logistic regression, decision tree, and K-nearest neighbor to predict AD progression after 2.5 years. Extensive experiments are performed using an ADNI dataset of 1036 subjects. The cross-validation performance of most algorithms has been improved by fusing the drugs and cognitive scores data. The results indicate the important role of patient’s taken drugs on the progression of AD disease.


2020 ◽  
pp. 1577-1597
Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


Author(s):  
Muzaffer Kanaan ◽  
Rüştü Akay ◽  
Canset Koçer Baykara

The use of technology for the purpose of improving crop yields, quality and quantity of the harvest, as well as maintaining the quality of the crop against adverse environmental elements (such as rodent or insect infestation, as well as microbial disease agents) is becoming more critical for farming practice worldwide. One of the technology areas that is proving to be most promising in this area is artificial intelligence, or more specifically, machine learning techniques. This chapter aims to give the reader an overview of how machine learning techniques can help solve the problem of monitoring crop quality and disease identification. The fundamental principles are illustrated through two different case studies, one involving the use of artificial neural networks for harvested grain condition monitoring and the other concerning crop disease identification using support vector machines and k-nearest neighbor algorithm.


Author(s):  
Kusuma Mohanchandra ◽  
Snehanshu Saha

Machine learning techniques, is a crucial tool to build analytical models in EEG data analysis. These models are an excellent choice for analyzing the high variability in EEG signals. The advancement in EEG-based Brain-Computer Interfaces (BCI) demands advanced processing tools and algorithms for exploration of EEG signals. In the context of the EEG-based BCI for speech communication, few classification and clustering techniques is presented in this book chapter. A broad perspective of the techniques and implementation of the weighted k-Nearest Neighbor (k-NN), Support vector machine (SVM), Decision Tree (DT) and Random Forest (RF) is explained and their usage in EEG signal analysis is mentioned. We suggest that these machine learning techniques provides not only potentially valuable control mechanism for BCI but also a deeper understanding of neuropathological mechanisms underlying the brain in ways that are not possible by conventional linear analysis.


Author(s):  
Vamsi K. Manchala ◽  
Alvaro V. Clara ◽  
Susheelkumar C. Subramanian ◽  
Sangram Redkar ◽  
Thomas Sugar

Abstract It is important to know and be able to classify the drivers’ behavior as good, bad, keen or aggressive, which would aid in driver assist systems to avoid vehicle crashes. This research attempts to develop, test, and compare the performance of machine learning methods for classifying human driving behavior. It also proposes to correlate driver affective states with the driving behavior. The major contributions of this work are to classify the driver behavior using Electroencephalograph (EEG) while driving simulated vehicle and compare them with the behavior classified using vehicle parameters and affective states. The study involved both classical machine learning techniques such as k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Artificial Neural Network (ANN) and latest “unsupervised” Hybrid Deep Learning techniques, and compared the accuracy of classification across subjects, various driving scenarios and affective states.


Sign in / Sign up

Export Citation Format

Share Document