scholarly journals X-Band/C-Band-Comparison of Ship Wake Detectability

Author(s):  
Björn Tings ◽  
Sven Jacobsen ◽  
Stefan Wiehle ◽  
Egbert Schwarz ◽  
Holger Daedelow

Recent studies investigated the detectability of ship wake signatures on SAR imagery using a large number of SAR images collocated with Automatic Identification System data for training machine learning models. These detectability models are in agreement with oceanographic expectations from preceding studies and can therefore be used for comparing the performance of different SAR sensors in terms of wake detectability. Previous model comparisons showed better wake detection performance of TerraSAR-X (TS-X) than of RADARSAT-2 (RS2) and Sentinel-1 (S1). A comparison between CosmoSkymed (CSK) and RS2 is performed here, to examine the hypothesis that X-Band is generally better for wake detection than C-Band. Finally, this hypothesis is not confirmed, as the detectability models for TS-X, CSK and RS2 reveal similar performances. A comparison of wake detection performance should take the individual wake components into account separately.

2021 ◽  
pp. 1-22
Author(s):  
Lei Jinyu ◽  
Liu Lei ◽  
Chu Xiumin ◽  
He Wei ◽  
Liu Xinglong ◽  
...  

Abstract The ship safety domain plays a significant role in collision risk assessment. However, few studies take the practical considerations of implementing this method in the vicinity of bridge-waters into account. Therefore, historical automatic identification system data is utilised to construct and analyse ship domains considering ship–ship and ship–bridge collisions. A method for determining the closest boundary is proposed, and the boundary of the ship domain is fitted by the least squares method. The ship domains near bridge-waters are constructed as ellipse models, the characteristics of which are discussed. Novel fuzzy quaternion ship domain models are established respectively for inland ships and bridge piers, which would assist in the construction of a risk quantification model and the calculation of a grid ship collision index. A case study is carried out on the multi-bridge waterway of the Yangtze River in Wuhan, China. The results show that the size of the ship domain is highly correlated with the ship's speed and length, and analysis of collision risk can reflect the real situation near bridge-waters, which is helpful to demonstrate the application of the ship domain in quantifying the collision risk and to characterise the collision risk distribution near bridge-waters.


Author(s):  
Markku Simila ◽  
Mikko Lensu

Ship speeds extracted from AIS data vary with ice conditions. We extrapolated this variation with SAR data to a chart of expected icegoing speed. The study is for the Gulf of Bothnia in March 2013 and for ships with ice class 1A Super that are able to navigate without icbreaker assistance. The speed was normalized to 0-10 for each ship. As the matching between AIS and SAR was complicated by ice drift during the time gap, from hours to two days, we calculated a set of local SAR statistics over several scales. We used random tree regression to estimate the speed. The accuracy was quantified by mean squared error (MSE), and the fraction of estimates close to the actual speeds. These depended strongly on the route and the day. MSE varied from 0.4 to 2.7 units2 for daily routes. 65 % of the estimates deviated less than one unit and 82 % less than 1.5 units from the AIS speeds. The estimated daily mean speeds were close to the observations. Largest speed decreases were provided by the estimator in a dampened form or not at all. This improved when ice chart thickness was included as one predictor.


2021 ◽  
Author(s):  
Jona Raphael ◽  
Ben Eggleston ◽  
Ryan Covington ◽  
Tatianna Evanisko ◽  
Sasha Bylsma ◽  
...  

<p><strong>Operational oil discharges from ships</strong>, also known as “bilge dumping,” have been identified as a major source of petroleum products entering our oceans, cumulatively exceeding the largest oil spills, such as the Exxon Valdez and Deepwater Horizon spills, even when considered over short time spans. However, we still don’t have a good estimate of</p><ul><li>How much oil is being discharged;</li> <li>Where the discharge is happening;</li> <li>Who the responsible vessels are.</li> </ul><p>This makes it difficult to prevent and effectively respond to oil pollution that can damage our marine and coastal environments and economies that depend on them.</p><p> </p><p>In this presentation we will share SkyTruth’s recent work to address these gaps using machine learning tools to detect oil pollution events and identify the responsible vessels when possible. We use a convolutional neural network (CNN) in a ResNet-34 architecture to perform <strong>pixel segmentation</strong> on all incoming <strong>Sentinel-1 synthetic aperture radar</strong> (SAR) imagery to classify slicks. Despite the satellites’ incomplete oceanic coverage, we have been detecting an average of <strong>135 vessel slicks per month</strong>, and have identified several geographic hotspots where oily discharges are occurring regularly. For the images that capture a vessel in the act of discharging oil, we rely on an <strong>Automatic Identification System</strong> (AIS) database to extract details about the ships, including vessel type and flag state. We will share our experience</p><ul><li>Making sufficient training data from inherently sparse satellite image datasets;</li> <li>Building a computer vision model using PyTorch and fastai;</li> <li>Fully automating the process in the Amazon Web Services (AWS) cloud.</li> </ul><p>The application has been running continuously since August 2020, has processed over 380,000 Sentinel-1 images, and has populated a database with more than 1100 high-confidence slicks from vessels. We will be discussing <strong>preliminary results</strong> from this dataset and remaining challenges to be overcome.</p><p> </p><p>Our objective in making this information and the underlying code, models, and training data <strong>freely available to the public</strong> and governments around the world is to enable public pressure campaigns to improve the prevention of and response to pollution events. Learn more at https://skytruth.org/bilge-dumping/</p>


2021 ◽  
pp. 253-269
Author(s):  
Claudia Ifrim ◽  
Manolis Wallace ◽  
Vassilis Poulopoulos ◽  
Andriana Mourti

2020 ◽  
Vol 58 (3) ◽  
pp. 1665-1677 ◽  
Author(s):  
Oktay Karakus ◽  
Igor Rizaev ◽  
Alin Achim

2015 ◽  
Vol 69 (1) ◽  
pp. 156-168 ◽  
Author(s):  
Harm Greidanus ◽  
Marlene Alvarez ◽  
Torkild Eriksen ◽  
Vincenzo Gammieri

Automatic ship reporting systems (AIS – Automatic identification System, LRIT – Long Range Identification and Tracking, VMS – Vessel Monitoring System) today allow global tracking of ships. One way to display the results is in a map of current ship positions over an area of interest, the Maritime Situational Picture (MSP). The MSP is dynamic and must be created by fusing the reporting systems' messages, constructing ship tracks and predicting ship positions to correct for latency especially in the case of AIS received by satellite which forms the bulk of the data. This paper discusses the completeness of the resulting MSP and the accuracy of its positions, quantifying the additional value of the individual data sources.


Sign in / Sign up

Export Citation Format

Share Document