scholarly journals Unfolded Protein Response and Crohn’s Diseases: A Molecular Mechanism of Wound Healing in the Gut

Author(s):  
Chao Li

Endoplasmic reticulum (ER) stress triggers a series of signaling and transcriptional events termed the unfolded protein response (UPR). Severe ER stress is associated with the development of fibrosis in different organs including lung, liver, kidney, heart, and intestine. ER stress is an essential response of epithelial and immune cells in the pathogenesis of inflammatory bowel disease (IBD) including Crohn’s disease. Intestinal epithelial cells are susceptible to ER stress-mediated damage due to secretion of a large amount of proteins that are involved in mucosal defense. In other cells, ER stress is linked to myofibroblast activation, extracellular matrix production, macrophage polarization, and immune cell differentiation. This review focuses on the role of UPR in the pathogenesis in IBD from an immunologic perspective. The roles of macrophage and mesenchymal cells in the UPR from in vitro and in vivo animal models are discussed. The links between ER stress and other signaling pathways such as senescence and autophagy are introduced. Recent advances in the understanding of the epigenetic regulation of UPR signaling are also updated here. The future directions of development of the UPR research and therapeutic strategies to manipulate ER stress levels are also reviewed.

2021 ◽  
Vol 3 (1) ◽  
pp. 31-43
Author(s):  
Chao Li

Endoplasmic reticulum (ER) stress triggers a series of signaling and transcriptional events termed the unfolded protein response (UPR). Severe ER stress is associated with the development of fibrosis in different organs, including lung, liver, kidney, heart, and intestine. ER stress is an essential response of epithelial and immune cells in the pathogenesis of Inflammatory Bowel Disease (IBD), including Crohn’s disease (CD). Intestinal epithelial cells are susceptible to ER stress-mediated damage due to secretion of a large amount of proteins that are involved in mucosal defense. In other cells, ER stress is linked to myofibroblast activation, extracellular matrix production, macrophage polarization, and immune cell differentiation. This review focuses on the role of the UPR in the pathogenesis in IBD from an immunologic perspective. The roles of macrophage and mesenchymal cells in the UPR from in vitro and in vivo animal models are discussed. The links between ER stress and other signaling pathways, such as senescence and autophagy, are introduced. Recent advances in the understanding of the epigenetic regulation of the UPR signaling are also updated here. The future directions of development of the UPR research and therapeutic strategies to manipulate ER stress levels are also reviewed.


Author(s):  
Chao Li

Endoplasmic reticulum (ER) stress triggers a series of signaling and transcriptional events termed the unfolded protein response (UPR). Severe ER stress is associated with the development of fibrosis in different organs including lung, liver, kidney, heart, and intestine. ER stress is an essential response of epithelial and immune cells in the pathogenesis of inflammatory bowel disease (IBD) including Crohn’s disease. Intestinal epithelial cells are susceptible to ER stress-mediated damage due to secretion of a large amount of proteins that are involved in mucosal defense. In other cells, ER stress is linked to myofibroblast activation, extracellular matrix production, macrophage polarization, and immune cell differentiation. This review focuses on the role of UPR in the pathogenesis in IBD from immunologic perspective. The roles of macrophage and mesenchymal cells in the UPR from in vitro and in vivo animal models are discussed. The links between ER stress and other signaling pathways such as senescence and autophagy are introduced. Recent advances in the understanding of the epigenetic regulation of UPR signaling are reported. The future directions of the development of the UPR research and therapeutic strategies to manipulate ER stress levels are also reviewed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ruxandra Dafinca ◽  
Paola Barbagallo ◽  
Kevin Talbot

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. Despite this heterogeneity, a key pathological signature is the mislocalization and aggregation of specific proteins in the cytoplasm, suggesting that convergent pathogenic mechanisms focusing on disturbances in proteostasis are important in ALS. In addition, many cellular processes have been identified as potentially contributing to disease initiation and progression, such as defects in axonal transport, autophagy, nucleocytoplasmic transport, ER stress, calcium metabolism, the unfolded protein response and mitochondrial function. Here we review the evidence from in vitro and in vivo models of C9ORF72 and TDP-43-related ALS supporting a central role in pathogenesis for endoplasmic reticulum stress, which activates an unfolded protein response (UPR), and mitochondrial dysfunction. Disruption in the finely tuned signaling between the ER and mitochondria through calcium ions may be a crucial trigger of mitochondrial deficits and initiate an apoptotic signaling cascade, thus acting as a point of convergence for multiple upstream disturbances of cellular homeostasis and constituting a potentially important therapeutic target.


2020 ◽  
Author(s):  
Yann Pretemer ◽  
Shunsuke Kawai ◽  
Makoto Watanabe ◽  
Sanae Nagata ◽  
Megumi Nishio ◽  
...  

SummaryChondrodysplasias are hereditary diseases caused by mutations in the components of growth cartilage. Although the unfolded protein response (UPR) has been identified as a key disease mechanism in mouse models, no suitable in vitro system has been reported to analyze the pathology in humans. Here, utilizing human chondrodysplasia-specific iPSCs, we examined the UPR caused by mutations in MATN3 or COL10A1. In growth plate-like structures formed from iPSC-derived sclerotome in vivo, the hypertrophic zone was disrupted, and induced hypertrophic chondrocytes in vitro showed varying levels of ER stress depending on the mutation. Autophagy inducers and chemical chaperones succeeded in reducing ER stress only in some mutants, while transcriptome analysis revealed many mutation-specific changes in genes involved in apoptosis, metabolism, and protein trafficking. In this way, our system has allowed the precise evaluation of the UPR caused by each mutation, opening up new avenues for treatment of individual chondrodysplasia patients.


2015 ◽  
Vol 26 (5) ◽  
pp. 913-923 ◽  
Author(s):  
Benjamin Wiles ◽  
Miao Miao ◽  
Erin Coyne ◽  
Louise Larose ◽  
Andrey V. Cybulsky ◽  
...  

USP19 deubiquitinating enzyme has two isoforms, cytoplasmic and endoplasmic reticulum (ER) localized. The ER-localized isoform specifically suppresses muscle cell differentiation in vitro and appears to do so by inhibiting the unfolded-protein response that occurs during such differentiation. In vivo, loss of USP19 promotes muscle regeneration following injury.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1350-1350
Author(s):  
Steffan T. Nawrocki ◽  
Yingchun Han ◽  
Ronan LE Moigne ◽  
Valeria Visconte ◽  
Bartlomiej Przychodzen ◽  
...  

Abstract Acute myeloid leukemia (AML) therapy has remained relatively unchanged for more than 40 years with the majority of patients not achieving long-term remission when treated with currently available agents. Novel strategies are urgently needed to improve outcomes. The constitutive dysregulation of protein synthesis/turnover contributes to disease progression and drug resistance in many forms of cancer including AML. p97 (VCP) is a master regulator of protein turnover that has been implicated in oncogenesis and malignant pathogenesis. CB-5083 is a first-in-class selective and potent orally available inhibitor of p97 that in currently being evaluated in phase I clinical trials in patients with multiple myeloma and advanced solid tumors. To assess the potential benefit of p97 inhibition as a novel approach for AML therapy, we investigated the efficacy, pharmacodynamics (PD), and pharmacokinetics (PK) of CB-5083 in a panel of human AML cell lines with diverse genetic backgrounds, primary AML specimens from both newly diagnosed and relapsed/refractory patients, and xenograft mouse models of AML. In vitro treatment with CB-5083 potently diminished the viability of AML cell lines (n = 7) and primary CD34+ blasts obtained from patients (n = 10) with IC50s significantly below 1 µM (range 200 - 700 nM) in all lines and specimens evaluated to date. Diminished viability was associated with reduced clonogenic survival and increased apoptosis in AML cell lines and primary blasts. In contrast to many conventional and experimental drugs that are less active against primary AML cells than established AML cell lines, primary cells exhibited sensitivity to CB-5083 that was similar to cell lines. Additionally, CB-5083 was highly active in 3 different cell line models of cytarabine resistance and primary cells from refractory AML patients. This suggests that CB-5083 may be effective for patients who are relapsed/refractory to conventional therapy. In vitro PD analyses demonstrated that CB-5083 rapidly triggered the accumulation of ubiquitin-conjugated proteins, activated the unfolded protein response (UPR), disrupted STAT5 signaling, reduced levels of key STAT5 targets including BCL-xL and PIM-2, and induced apoptosis. The pro-apoptotic effects of CB-5083 were associated with activation of the endoplasmic reticulum (ER) resident initiator caspase-4 and induction of the BH3-only protein NOXA, which has been previously demonstrated to be an important mediator of cell death induced by other agents that disrupt protein homeostasis. RNA sequencing (RNASeq) gene ontology (GO) analyses of MV4-11 and MOLM-13 AML cells following treatment with CB-5083 demonstrated that short-term treatment (6h) caused significant increases in multiple regulators of the unfolded protein response, protein biosynthesis, and other ubiquitin-related pathways (p<0.001). Results were confirmed by qRT-PCR. The in vivo anti-leukemic activity of CB-5083 was investigated in two different xenograft mouse models of AML: the FLT3-ITD+ MV4-11 cell line and APML HL-60 cells. Oral administration of CB-5083 (once daily, 4 days on, 3 days off) was well tolerated and induced disease regression in both xenograft models (p<0.01). In vivo PD studies demonstrated that administration of CB-5083 led to reduced AML cell proliferation (PCNA), to the induction of apoptosis (active caspase-3), and pathway inhibition as evidenced by poly-ubiquitin accumulation and elevated expression of CHOP, GRP78, and NOXA. PK-PD analyses demonstrated a correlation between the kinetics of the in vivo PD effects and drug exposure. Our collective preclinical data demonstrate that p97 inhibition is a very effective novel anti-leukemic strategy and support clinical investigation of CB-5083 in patients with relapsed/refractory AML. Disclosures LE Moigne: Cleave Biosciences: Employment. Rolfe:Cleave Biosciences: Employment. Djakovic:Cleave Biosciences: Employment. Anderson:Cleave Biosciences: Employment. Wustrow:Cleave Biosciences: Employment. Zhou:Cleave Biosciences: Employment. Wong:Cleave Biosciences: Employment. Sekeres:TetraLogic: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Carew:Boehringer Ingelheim: Research Funding.


2015 ◽  
Vol 6 (10) ◽  
pp. 3275-3281 ◽  
Author(s):  
Elena Giordano ◽  
Olivier Dangles ◽  
Njara Rakotomanomana ◽  
Silvia Baracchini ◽  
Francesco Visioli

Endoplasmic reticulum (ER) stress is important for atherosclerosis development and is mediated by the unfolded protein response (UPR).


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 55 ◽  
Author(s):  
Xiaoyi Liu ◽  
Enxiang Zhang ◽  
Shutao Yin ◽  
Chong Zhao ◽  
Lihong Fan ◽  
...  

Previous studies by us or others have shown that endoplasmic reticulum (ER) stress was activated by fumonisin 1 (FB1) exposure, which is considered to be a critical event in the FB1-induced toxic effect. However, the detailed mechanisms underlying FB1-induced ER stress-mediated liver toxicity remain elusive. The objectives of the present study were designed to address the following issues: (1) the contribution of each arm of the unfolded protein response (UPR); (2) the downstream targets of ER stress that mediated FB1-induced liver toxicity; and (3) the relationship between ER stress and oxidative stress triggered by FB1. We also investigated whether the inhibition of ER stress by its inhibitor could offer protection against FB1-induced hepatotoxicity in vivo, which has not been critically addressed previously. The results showed that the activation of the IRE1α axis, but not of the PERK axis, of UPR contributed to FB1-induced ER stress-mediated hepatocyte toxicity; the activation of the Bax/Bak-mediated mitochondrial pathway lay downstream of IRE1α to trigger mitochondrial-dependent apoptosis in response to FB1; FB1-induced oxidative stress and ER stress augmented each other through a positive feedback mechanism; tauroursodeoxycholic acid (TUDCA)-mediated ER stress inactivation is an effective approach to counteract FB1-induced hepatotoxicity in vivo. The data of the present study allow us to better understand the mechanisms of FB1-induced hepatotoxicity.


2015 ◽  
Vol 309 (10) ◽  
pp. E861-E873 ◽  
Author(s):  
Fang Wang ◽  
Hongbo Weng ◽  
Michael J. Quon ◽  
Jingwen Yu ◽  
Jian-Ying Wang ◽  
...  

Endoplasmic reticulum (ER) stress and caspase 8-dependent apoptosis are two interlinked causal events in maternal diabetes-induced neural tube defects (NTDs). The inositol-requiring enzyme 1α (IRE1α) signalosome mediates the proapoptotic effect of ER stress. Diabetes increases tumor necrosis factor receptor type 1R-associated death domain (TRADD) expression. Here, we revealed two new unfolded protein response (UPR) regulators, TRADD and Fas-associated protein with death domain (FADD). TRADD interacted with both the IRE1α-TRAF2-ASK1 complex and FADD. In vivo overexpression of a FADD dominant negative (FADD-DN) mutant lacking the death effector domain disrupted diabetes-induced IRE1α signalosome and suppressed ER stress and caspase 8-dependent apoptosis, leading to NTD prevention. FADD-DN abrogated ER stress markers and blocked the JNK1/2-ASK1 pathway. Diabetes-induced mitochondrial translocation of proapoptotic Bcl-2 members mitochondrial dysfunction and caspase cleavage were also alleviated by FADD-DN. In vitro TRADD overexpression triggered UPR and ER stress before manifestation of caspase 3 and caspase 8 cleavage and apoptosis. FADD-DN overexpression repressed high glucose- or TRADD overexpression-induced IRE1α phosphorylation, its downstream proapoptotic kinase activation and endonuclease activities, and apoptosis. FADD-DN also attenuated tunicamycin-induced UPR and ER stress. These findings suggest that TRADD participates in the IRE1α signalosome and induces UPR and ER stress and that the association between TRADD and FADD is essential for diabetes- or high glucose-induced UPR and ER stress.


Sign in / Sign up

Export Citation Format

Share Document