scholarly journals Functional Connectivity in Multi-Habitat Marine Species

Author(s):  
Elizabeth Porter ◽  
Aurore Ponchon ◽  
Rebekka Allgayer ◽  
Samantha Finnegan ◽  
Justin Travis ◽  
...  

Many marine species use different habitats at different stages of their life cycle. Functional connectivity, the degree to which the seascape facilitates or impedes movement between habitat patches, is poorly studied in marine systems. We reviewed the scientific literature to explore the various barriers preventing functional connectivity between marine habitats and how the removal of these barriers may restore connectivity. To our knowledge, this is the first systematic review to investigate functional connectivity between life cycle habitats for a range of marine species. A total of 4,499 records were identified and screened, leaving 69 publications eligible for review. The results highlighted a range of distances between nursery and adult habitats that limited functional connectivity for a number of species, predominantly reef fishes. For some species, adults were absent on reefs >9km from the closest nursery habitat, suggesting a threshold for connectivity. Similarly, increased distance between spawning and settlement habitats decreased settling success of larvae of various taxa. Pelagic larval duration, seascape topography and climate change were also shown to impact functional connectivity during the larval phase. The removal and mitigation of barriers preventing functional connectivity, including dams and habitat fragmentation, restored connectivity between disconnected life cycle habitats, but the efficacy of these approaches differed between species and studies. The results of this review deepen our understanding of marine functional connectivity between life cycle habitats via larval, juvenile, and adult dispersal. These findings have implications for the design and management of marine reserve networks.

ZooKeys ◽  
2020 ◽  
Vol 1007 ◽  
pp. 145-180
Author(s):  
David Ross Robertson ◽  
Carlos J. Estapé ◽  
Allison M. Estapé ◽  
Ernesto Peña ◽  
Luke Tornabene ◽  
...  

Sint Eustatius (Statia) is a 21 km2 island situated in the northeastern Caribbean Sea. The most recent published sources of information on that island’s marine fish fauna is in two non-governmental organization reports from 2015–17 related to the formation of a marine reserve. The species-list in the 2017 report was based on field research in 2013–15 using SCUBA diving surveys, shallow “baited underwater video surveys” (BRUVs), and data from fishery surveys and scientific collections over the preceding century. That checklist comprised 304 species of shallow (mostly) and deep-water fishes. In 2017 the Smithsonian Deep Reef Observation Project surveyed deep-reef fishes at Statia using the crewed submersible Curasub. That effort recorded 120 species, including 59 new occurrences records. In March-May 2020, two experienced citizen scientists completed 62 SCUBA dives there and recorded 244 shallow species, 40 of them new records for Statia. The 2017–2020 research effort increased the number of species known from the island by 33.6% to 406. Here we present an updated catalog of that marine fish fauna, including voucher photographs of 280 species recorded there in 2017 and 2020. The Statia reef-fish fauna likely is incompletely documented as it has few small, shallow, cryptobenthic species, which are a major component of the regional fauna. A lack of targeted sampling is probably the major factor explaining that deficit, although a limited range of benthic marine habitats may also be contributing.


2020 ◽  
Vol 20 (3) ◽  
pp. 75-88
Author(s):  
N. A. Klimov ◽  
A. S. Simbirtsev

An analysis of current scientific literature on the pathogenesis of the coronavirus infection that caused the 2019 pandemic, COVID-19, was carried out. The structure, genome, introduction into the cell and the life cycle of the SARS-CoV-2 virus that caused the pandemic, the mechanisms of protection of the virus from the hosts immune system, features of the clinical picture of coronavirus infection, the pathogenesis of viral pneumonia, in particular, disruption of the renin-angiotensin system, cytokine storm, participation of the complement system in the pathogenesis of COVID-19 are reviewed. The models of infections caused by SARS-CoV and SARS-CoV-2 in laboratory mice are also considered.


2020 ◽  
Vol 375 (1814) ◽  
pp. 20190450 ◽  
Author(s):  
Dustin J. Marshall ◽  
Mariana Alvarez-Noriega

Global change will alter the distribution of organisms around the planet. While many studies have explored how different species, groups and traits might be re-arranged, few have explored how dispersal is likely to change under future conditions. Dispersal drives ecological and evolutionary dynamics of populations, determining resilience, persistence and spread. In marine systems, dispersal shows clear biogeographical patterns and is extremely dependent on temperature, so simple projections can be made regarding how dispersal potentials are likely to change owing to global warming under future thermal regimes. We use two proxies for dispersal—developmental mode and developmental duration. Species with a larval phase are more dispersive than those that lack a larval phase, and species that spend longer developing in the plankton are more dispersive than those that spend less time in the plankton. Here, we explore how the distribution of different development modes is likely to change based on current distributions. Next, we estimate how the temperature-dependence of development itself depends on the temperature in which the species lives, and use this estimate to project how developmental durations are likely to change in the future. We find that species with feeding larvae are likely to become more prevalent, extending their distribution poleward at the expense of species with aplanktonic development. We predict that developmental durations are likely to decrease, particularly in high latitudes where durations may decline by more than 90%. Overall, we anticipate significant changes to dispersal in marine environments, with species in the polar seas experiencing the greatest change. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.


2000 ◽  
Vol 51 (8) ◽  
pp. 755 ◽  
Author(s):  
Trevor J. Willis ◽  
Russell C. Babcock

Estimates of the relative density of fishes form the basis of many marine ecological studies as well as the assessment of effects of fishing or pollution. Plasticity in the behavioural response of large reef fishes to SCUBA divers means that commonly used underwater visual census (UVC) techniques do not always provide reliable estimates of relative density. The paper describes the system configuration, deployment methods, testing and use of a remotely deployed baited underwater video (BUV) system for the survey of carnivorous reef fishes (snapper, Pagrus auratus and blue cod,Parapercis colias) in marine reserves of northern New Zealand. Concurrent UVC and BUV surveys inside and outside a marine reserve showed that, whereas UVC detected few snapper in either area (resulting in little confidence in statistically significant results), BUV demonstrated significant differences in relative density. Conversely, blue cod were found to occur at significantly higher densities within the reserve by UVC, but not by BUV. The provision of accurate estimates of fish size (<20 mm error) from video footage also illustrated differences in size structure between protected and fished populations. The data suggest that a combination of survey techniques is likely to be necessary where multispecies assemblages are being assessed.


2012 ◽  
Vol 93 (5) ◽  
pp. 1211-1229 ◽  
Author(s):  
Kenneth H. Nicholls

Near-shore benthic sediment samples collected at low tide from the western Atlantic Ocean (Sable Island, Nova Scotia, Canada) and the eastern Pacific Ocean (Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada) were searched for little-known species of the rhizarian (Cercozoa) genera Pinaciophora, Rabdiaster and other related rotosphaerids. Several representatives with complete investitures of silica-scales (the structure of which is taxonomically diagnostic) were studied by transmission and scanning electron microscopy. The validity of the genus Pinaciophora (sensu Penard, 1904) as defined by a single type of plate-scale only, was strengthened by the discovery of Pinaciophora rubicunda and of another previously undescribed entity, both of which lacked spine-scales. Several earlier reports of loose scales from marine habitats, and erroneously identified as the freshwater P. fluviatilis, might be assigned to P. marina sp. nov. The new genus Thomseniophora was erected to include all ‘Pinaciophora' previously known to produce spine-scales and seven new taxa were described. Six other little-known species of Thomseniophora, Pinaciophora and Rabdiaster were described from the Canadian west coast (Pacific Ocean) including one new species of Pinaciophora. The addition of Thomseniophora brings the number of genera assigned to the Rotosphaerida to six: Pinaciophora, Thomseniophora, Rabdiaster, Rabdiophrys and Pompholyxophrys. The presence of several apparently closely related taxa in the same collection (same location and sampling date) strengthens the conclusion that relatively small differences in the morphology of their siliceous scales were more likely caused by genetic differences than by environmental influences.


2012 ◽  
Vol 39 (3) ◽  
pp. 199-203 ◽  
Author(s):  
A.J. CAVEEN ◽  
C.J. SWEETING ◽  
T.J. WILLIS ◽  
N.V.C. POLUNIN

SUMMARYThe scientific literature (including some of the most high-profile papers) on the ecological and fisheries effects of permanent no-take marine reserves is dominated by examples from hard tropical and warm temperate ecosystems. It appears to have been tacitly assumed that inference from these studies can directly inform expectations of marine reserve effects in cooler temperate and cold temperate waters. Trends in peer-reviewed studies indicate that the empirical basis for this assumption is tenuous because of a relative lack of research effort in cooler seas, and differences between tropical and temperate regions in ecology, seasonality, the nature of fisheries and prevailing governance regimes.


1993 ◽  
Author(s):  
T. L. Gaudette ◽  
Larry Fraser ◽  
S. A. Della Villa

Product reliability is influenced by both design and operating and maintenance practices. This means both the equipment manufacturer and the equipment’s operator have an impact on the systems’ achievable level of availability. Many variables such as application (utility or cogeneration) or service or duty cycle (peaking, cycling, or continuous duty), influence the expected availability/reliability of any unit. These variables and an understanding of the expected “economic demand” the unit must fill are important elements for a realistic and accurate reliability assessment. These variables also affect the expected maintenance costs associated with the unit. Both the equipment manufacturer and the equipment operator have a vested interest in understanding and influencing this process. If the expected level of reliability/availability is a major requirement of the equipment owner/operator, then there must be an accurate understanding of how the reliability of the unit will be protected over the long term. Thus the unit first cost and life cycle cost can be estimated in a meaningful way. The objective of this paper is to provide an assessment of proved design reliability along with the application of on condition maintenance of Turbo Power and Marine Systems’ (Turbo Power) most recent product introduction, the FT8. A computer-aided reliability analysis was made by Turbo Power with the support of Strategic Power Systems, Inc. (SPS), to demonstrate and support the suitability of the FT8 for both peaking and continuous duty applications utilizing on condition maintenance concepts. Consequently, the presentation of the RAM analysis is organized to assist in developing a complete and comprehensive understanding of the evolution of the product and to develop realistic RAM (Reliability, Availability, and Maintainability) and life cycle cost expectations.


Sign in / Sign up

Export Citation Format

Share Document