Computer-Aided FT8® RAM Analysis With On Condition Maintenance

1993 ◽  
Author(s):  
T. L. Gaudette ◽  
Larry Fraser ◽  
S. A. Della Villa

Product reliability is influenced by both design and operating and maintenance practices. This means both the equipment manufacturer and the equipment’s operator have an impact on the systems’ achievable level of availability. Many variables such as application (utility or cogeneration) or service or duty cycle (peaking, cycling, or continuous duty), influence the expected availability/reliability of any unit. These variables and an understanding of the expected “economic demand” the unit must fill are important elements for a realistic and accurate reliability assessment. These variables also affect the expected maintenance costs associated with the unit. Both the equipment manufacturer and the equipment operator have a vested interest in understanding and influencing this process. If the expected level of reliability/availability is a major requirement of the equipment owner/operator, then there must be an accurate understanding of how the reliability of the unit will be protected over the long term. Thus the unit first cost and life cycle cost can be estimated in a meaningful way. The objective of this paper is to provide an assessment of proved design reliability along with the application of on condition maintenance of Turbo Power and Marine Systems’ (Turbo Power) most recent product introduction, the FT8. A computer-aided reliability analysis was made by Turbo Power with the support of Strategic Power Systems, Inc. (SPS), to demonstrate and support the suitability of the FT8 for both peaking and continuous duty applications utilizing on condition maintenance concepts. Consequently, the presentation of the RAM analysis is organized to assist in developing a complete and comprehensive understanding of the evolution of the product and to develop realistic RAM (Reliability, Availability, and Maintainability) and life cycle cost expectations.

Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 215
Author(s):  
Bojana Petrović ◽  
Xingxing Zhang ◽  
Ola Eriksson ◽  
Marita Wallhagen

The objective of this paper was to explore long-term costs for a single-family house in Sweden during its entire lifetime. In order to estimate the total costs, considering construction, replacement, operation, and end-of-life costs over the long term, the life cycle cost (LCC) method was applied. Different cost solutions were analysed including various economic parameters in a sensitivity analysis. Economic parameters used in the analysis include various nominal discount rates (7%, 5%, and 3%), an inflation rate of 2%, and energy escalation rates (2–6%). The study includes two lifespans (100 and 50 years). The discounting scheme was used in the calculations. Additionally, carbon-dioxide equivalent (CO2e) emissions were considered and systematically analysed with costs. Findings show that when the discount rate is decreased from 7% to 3%, the total costs are increased significantly, by 44% for a 100-year lifespan, while for a 50 years lifespan the total costs show a minor increase by 18%. The construction costs represent a major part of total LCC, with labor costs making up half of them. Considering costs and emissions together, a full correlation was not found, while a partial relationship was investigated. Results can be useful for decision-makers in the building sector.


2018 ◽  
Vol 225 ◽  
pp. 01020
Author(s):  
Thamir K. Ibrahim ◽  
Mohammed K. Mohammed ◽  
Omar I. Awad ◽  
Rizalman Mamat ◽  
M. Kh Abdolbaqi

A basic goal of operation management is to successfully complete the life cycle of power systems, with optimum output against minimal input. This document intends calculating both, the performance and the life cycle cost of a gas turbine fitted with an inlet air cooling mechanism. Correspondingly, both a thermodynamic and an economic model are drawn up, to present options towards computing the cooling loads and the life cycle costs. The primary observations indicate that around 120MWh of power is derived from gas turbine power plants incorporating the cooling mechanism, compared to 96.6 MWh for units without the mechanism, while the life cycle cost is lower for units incorporating the cooling process. This indicates benefits in having the mechanism incorporated in the architecture of a gas turbine.


2013 ◽  
Vol 723 ◽  
pp. 721-728
Author(s):  
Jih Chiang Lee ◽  
Jyh Dong Lin ◽  
Chin Rung Chiou ◽  
Han Yi Wang

The objectives of this paper are to present the feasibility of utilizing reliability-based method to quantify life-cycle cost associated with performance specification. And a framework develops for quantifying the life-cycle cost. The framework consists of three components: (1) the pavement deterioration performance prediction; (2) the reliability-based risk estimation; and (3) the life-cycle cost analysis. An example is illustrated using the International Roughness Index (IRI) data to demonstrate how the approach works. The approach has potential for use in valuation of long term pavement maintenance contracts.


2018 ◽  
Vol 23 (2) ◽  
pp. 170-184 ◽  
Author(s):  
Nayanthara De Silva ◽  
Nilmini Weerasinghe ◽  
H.W.N. Madhusanka ◽  
Mohan Kumaraswamy

Purpose The purpose of this paper is to identify enablers for setting up relationally integrated value networks (RIVANS) for total facilities management (TFM) as a holistic approach to bridge the Project Management (PM) phase to the facilities management (FM) phase, aiming for better service delivery while optimizing the life-cycle cost. These enablers are proposed as required driving forces for the industry to bridge current gaps through RIVANS for TFM so as to improve the value of the facility and deliver better value to its stakeholders over its life span. Design/methodology/approach A literature review elicited 11 typical better values that could be achieved by suitably linking the PM and FM supply chains in general. While these were tested in parallel research exercises in Hong Kong, the UK and Singapore, this paper reports on the specific findings from Sri Lanka, where a Web-based questionnaire survey was conducted to identify potential better values for proposed relational networks (including the clients, consultants, contractors and suppliers in the supply chain). Better values were then clustered under principal domains/components using factor analysis to establish synergetic enablers. Findings In total, 11 significant better values for TFM were identified and four enablers were extracted as building long-term integrated networks, establishing a common resource pool linking PM and FM, enhancing sustainability of TFM and developing a similar protocol between PM and FM. Originality/value The study carried out in this paper contributes to knowledge by identifying drivers to bridge the gap between PM and FM to best achieve clients’ long-term aspirations through a holistic life-cycle approach. Furthermore, all stakeholders in TFM can revisit their practices to establish and strengthen the identified enablers.


Author(s):  
Raymond Nelson ◽  
Peter Sandborn ◽  
Janis P. Terpenny ◽  
Liyu Zheng

When an original equipment manufacturer no longer supplies and/or supports a product then the product is considered to be obsolete. Obsolescence is a significant problem for systems whose operational and support life is much longer than the procurement lifetimes of their constituent components. Unlike high-volume, commercial products, which are quickly evolved, long field life, low-volume systems, such as aircraft may require updates of their components and technology called design refreshes to simply remain manufacturable and supportable. However these systems can’t perform design refreshes all the time due to the high nonrecurring and re-qualification costs. One approach to optimally managing this problem is to use DRP (Design Refresh Planning), which is a strategic method for scheduling design refreshes such that the life cycle cost impact of obsolescence is minimized. The planning of these design refreshes is restricted by various constraints, which need to be implemented into the DRP process. These constraints can reflect technology roadmap requirements, obsolescence management realities, logistical restrictions, budget ceilings and management policy. In this paper, constraints imposed on the DRP process are explored, classified within a taxonomy, and implemented in the planning process. A communications system design example is included.


2017 ◽  
Vol 23 (2) ◽  
pp. 107-112
Author(s):  
Antonín Novotný ◽  
Dalibor Procházka

Abstract After several years of discussion and decision-making approaches Army of the Czech Republic to implement the purchase of multipurpose helicopters to replace the previously used, morally and physically obsolete attack helicopters Mi-24 / 34. The process of acquisition consists of many stages; it is not a simple matter and has its pitfalls. It is also a big, expensive and long-term acquisition in which the poor implementation can cause problems that are likely to affect the Army of the Czech Republic and its Air Force for many years. One of the decision-making process inputs is an estimate of Life Cycle Cost (LCC). For the estimation, many methods can be used. The paper deals with application of system dynamics to LCC estimation process. Partial models of utilization and support Life Cycle phases are presented, which can be further developed according to consecutive data availability. An influence of different helicopter operating modes on a Life Cycle Cost is demonstrated by means of simulation in Vensim application. The models, after verification and validation, can be used to support the acquisition process.


Energies ◽  
2012 ◽  
Vol 5 (10) ◽  
pp. 3972-3985 ◽  
Author(s):  
Alexandre Hugo ◽  
Radu Zmeureanu

The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.


Sign in / Sign up

Export Citation Format

Share Document