scholarly journals Unsupervised Learning Method for SAR Image Classification Based on Spiking Neural Network

Author(s):  
Jiankun Chen ◽  
Xiaolan Qiu ◽  
Chuanzhao Han ◽  
Yirong Wu

Recent neuroscience research results show that the nerve information in the brain is not only encoded by the spatial information. Spiking neural network based on pulse frequency coding plays a very important role in dealing with the problem of brain signal, especially complicated space-time information. In this paper, an unsupervised learning algorithm for bilayer feedforward spiking neural networks based on spike-timing dependent plasticity (STDP) competitiveness is proposed and applied to SAR image classification on MSTAR for the first time. The SNN learns autonomously from the input value without any labeled signal and the overall classification accuracy of SAR targets reached 80.8%. The experimental results show that the algorithm adopts the synaptic neurons and network structure with stronger biological rationality, and has the ability to classify targets on SAR image. Meanwhile, the feature map extraction ability of neurons is visualized by the generative property of SNN, which is a beneficial attempt to apply the brain-like neural network into SAR image interpretation.


Author(s):  
Taras Iakymchuk ◽  
Alfredo Rosado-Muñoz ◽  
Juan F Guerrero-Martínez ◽  
Manuel Bataller-Mompeán ◽  
Jose V Francés-Víllora


2021 ◽  
Vol 11 (5) ◽  
pp. 2059
Author(s):  
Sungmin Hwang ◽  
Hyungjin Kim ◽  
Byung-Gook Park

A hardware-based spiking neural network (SNN) has attracted many researcher’s attention due to its energy-efficiency. When implementing the hardware-based SNN, offline training is most commonly used by which trained weights by a software-based artificial neural network (ANN) are transferred to synaptic devices. However, it is time-consuming to map all the synaptic weights as the scale of the neural network increases. In this paper, we propose a method for quantized weight transfer using spike-timing-dependent plasticity (STDP) for hardware-based SNN. STDP is an online learning algorithm for SNN, but we utilize it as the weight transfer method. Firstly, we train SNN using the Modified National Institute of Standards and Technology (MNIST) dataset and perform weight quantization. Next, the quantized weights are mapped to the synaptic devices using STDP, by which all the synaptic weights connected to a neuron are transferred simultaneously, reducing the number of pulse steps. The performance of the proposed method is confirmed, and it is demonstrated that there is little reduction in the accuracy at more than a certain level of quantization, but the number of pulse steps for weight transfer substantially decreased. In addition, the effect of the device variation is verified.



2014 ◽  
Vol 6 ◽  
pp. 180620 ◽  
Author(s):  
Fangzheng Xue ◽  
Wei Wang ◽  
Nan Li ◽  
Yuchao Yang

Spiking neural network, a computational model which uses spikes to process the information, is good candidate for mobile robot controller. In this paper, we present a novel mechanism for controlling mobile robots based on self-organized spiking neural network (SOSNN) and introduce a method for FPGA implementation of this SOSNN. The spiking neuron we used is Izhikevich model. A key feature of this controller is that it can simulate the process of unconditioned reflex (avoid obstacles using infrared sensor signals) and conditioned reflex (make right choices in multiple T-maze) by spike timing-dependent plasticity (STDP) learning and dopamine-receptor modulation. Experimental results show that the proposed controller is effective and is easy to implement. The FPGA implementation method aims to build up a specific network using generic blocks designed in the MATLAB Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability, and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOSNN network, as well as each individual component block.





Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3276
Author(s):  
Szymon Szczęsny ◽  
Damian Huderek ◽  
Łukasz Przyborowski

The paper describes the architecture of a Spiking Neural Network (SNN) for time waveform analyses using edge computing. The network model was based on the principles of preprocessing signals in the diencephalon and using tonic spiking and inhibition-induced spiking models typical for the thalamus area. The research focused on a significant reduction of the complexity of the SNN algorithm by eliminating most synaptic connections and ensuring zero dispersion of weight values concerning connections between neuron layers. The paper describes a network mapping and learning algorithm, in which the number of variables in the learning process is linearly dependent on the size of the patterns. The works included testing the stability of the accuracy parameter for various network sizes. The described approach used the ability of spiking neurons to process currents of less than 100 pA, typical of amperometric techniques. An example of a practical application is an analysis of vesicle fusion signals using an amperometric system based on Carbon NanoTube (CNT) sensors. The paper concludes with a discussion of the costs of implementing the network as a semiconductor structure.



2013 ◽  
Vol 760-762 ◽  
pp. 1486-1490
Author(s):  
Ding Ding Jiang ◽  
De Rong Cai ◽  
Qiang Wei

SAR image recognition is an important content of of aviation image interpretation work. In this paper, the characteristics of SAR images a practical significance of morphological filtering neural network model and its adaptive BP learning algorithm. As can be seen through the experimental results, the algorithm can not only adapt to the complex and diverse background environment, and has a displacement of the same continuous moving target detection capability, telescopic invariant and rotation invariant features.



Sign in / Sign up

Export Citation Format

Share Document