scholarly journals Spiking Neural Network with Linear Computational Complexity for Waveform Analysis in Amperometry

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3276
Author(s):  
Szymon Szczęsny ◽  
Damian Huderek ◽  
Łukasz Przyborowski

The paper describes the architecture of a Spiking Neural Network (SNN) for time waveform analyses using edge computing. The network model was based on the principles of preprocessing signals in the diencephalon and using tonic spiking and inhibition-induced spiking models typical for the thalamus area. The research focused on a significant reduction of the complexity of the SNN algorithm by eliminating most synaptic connections and ensuring zero dispersion of weight values concerning connections between neuron layers. The paper describes a network mapping and learning algorithm, in which the number of variables in the learning process is linearly dependent on the size of the patterns. The works included testing the stability of the accuracy parameter for various network sizes. The described approach used the ability of spiking neurons to process currents of less than 100 pA, typical of amperometric techniques. An example of a practical application is an analysis of vesicle fusion signals using an amperometric system based on Carbon NanoTube (CNT) sensors. The paper concludes with a discussion of the costs of implementing the network as a semiconductor structure.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 216922-216932
Author(s):  
Giseok Kim ◽  
Kiryong Kim ◽  
Sara Choi ◽  
Hyo Jung Jang ◽  
Seong-Ook Jung

2014 ◽  
Vol 898 ◽  
pp. 514-520 ◽  
Author(s):  
Chang Kai Xu ◽  
Ming Li ◽  
Jian Yin

In this paper, a neural network sliding mode controller for a kind of 5DOFs robotic manipulator is proposed. A radial basis function (RBF) neural network is used as an estimator to approximate uncertainties of the system. The learning algorithm of the neural network improves the performance of the system. A globle terminal sliding mode control (GTSMC) is designed to guarantee the stability and improve the dynamic performance of the robotic manipulator. Simulation results show that the proposed NNSMC strategy is effective to ensure the robustness and dynamic performance of the 5DOFs robotic manipulator.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nicholas Ampazis ◽  
Stavros J. Perantonis

A constrained neural network optimization algorithm is presented for factorizing simultaneously the numerator and denominator polynomials of the transfer functions of 2-D IIR filters. The method minimizes a cost function based on the frequency response of the filters, along with simultaneous satisfaction of appropriate constraints, so that factorization is facilitated and the stability of the resulting filter is respected.


Author(s):  
Taras Iakymchuk ◽  
Alfredo Rosado-Muñoz ◽  
Juan F Guerrero-Martínez ◽  
Manuel Bataller-Mompeán ◽  
Jose V Francés-Víllora

2021 ◽  
Vol 11 (5) ◽  
pp. 2059
Author(s):  
Sungmin Hwang ◽  
Hyungjin Kim ◽  
Byung-Gook Park

A hardware-based spiking neural network (SNN) has attracted many researcher’s attention due to its energy-efficiency. When implementing the hardware-based SNN, offline training is most commonly used by which trained weights by a software-based artificial neural network (ANN) are transferred to synaptic devices. However, it is time-consuming to map all the synaptic weights as the scale of the neural network increases. In this paper, we propose a method for quantized weight transfer using spike-timing-dependent plasticity (STDP) for hardware-based SNN. STDP is an online learning algorithm for SNN, but we utilize it as the weight transfer method. Firstly, we train SNN using the Modified National Institute of Standards and Technology (MNIST) dataset and perform weight quantization. Next, the quantized weights are mapped to the synaptic devices using STDP, by which all the synaptic weights connected to a neuron are transferred simultaneously, reducing the number of pulse steps. The performance of the proposed method is confirmed, and it is demonstrated that there is little reduction in the accuracy at more than a certain level of quantization, but the number of pulse steps for weight transfer substantially decreased. In addition, the effect of the device variation is verified.


Sign in / Sign up

Export Citation Format

Share Document