scholarly journals The Complex Order Fractional Derivatives and Systems Are Non Hermitian

Author(s):  
Manuel Ortigueira

This paper discusses the concept of fractional derivative with complex order from the application point of view. It is shown that a fractional derivative is hermitian, if and only if the order is real. The hermitian part of complex order derivatives behave like allpass filters with almost logarithmic phase.

Author(s):  
Chenkuan Li

AbstractIn this paper, we define fractional derivative of arbitrary complex order of the distributions concentrated on,where Re


2020 ◽  
Vol 23 (2) ◽  
pp. 520-533
Author(s):  
Erasmo M. Ferreira ◽  
Anderson K. Kohara ◽  
Javier Sesma

AbstractWe prove that the Weyl fractional derivative is a useful instrument to express certain properties of the zeta related functions. Specifically, we show that a known reflection property of the Hurwitz zeta function ζ(n, a) of integer first argument can be extended to the more general case of ζ(s, a), with complex s, by replacement of the ordinary derivative of integer order by Weyl fractional derivative of complex order. Besides, ζ(s, a) with ℜ(s) > 2 is essentially the Weyl (s − 2)-derivative of ζ(2, a). These properties of the Hurwitz zeta function can be immediately transferred to a family of polygamma functions of complex order defined in a natural way. Finally, we discuss the generalization of a recently unveiled reflection property of the Lerch’s transcendent.


Author(s):  
Li Ma ◽  
Changpin Li

This paper is devoted to investigating the relation between Hadamard-type fractional derivatives and finite part integrals in Hadamard sense; that is to say, the Hadamard-type fractional derivative of a given function can be expressed by the finite part integral of a strongly singular integral, which actually does not exist. Besides, our results also cover some fundamental properties on absolutely continuous functions, and the logarithmic series expansion formulas at the right end point of interval for functions in certain absolutely continuous spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 475
Author(s):  
Ewa Piotrowska ◽  
Krzysztof Rogowski

The paper is devoted to the theoretical and experimental analysis of an electric circuit consisting of two elements that are described by fractional derivatives of different orders. These elements are designed and performed as RC ladders with properly selected values of resistances and capacitances. Different orders of differentiation lead to the state-space system model, in which each state variable has a different order of fractional derivative. Solutions for such models are presented for three cases of derivative operators: Classical (first-order differentiation), Caputo definition, and Conformable Fractional Derivative (CFD). Using theoretical models, the step responses of the fractional electrical circuit were computed and compared with the measurements of a real electrical system.


Open Physics ◽  
2011 ◽  
Vol 9 (5) ◽  
Author(s):  
Dumitru Baleanu ◽  
Sergiu Vacaru

AbstractWe present a study of fractional configurations in gravity theories and Lagrange mechanics. The approach is based on a Caputo fractional derivative which gives zero for actions on constants. We elaborate fractional geometric models of physical interactions and we formulate a method of nonholonomic deformations to other types of fractional derivatives. The main result of this paper consists of a proof that, for corresponding classes of nonholonomic distributions, a large class of physical theories are modelled as nonholonomic manifolds with constant matrix curvature. This allows us to encode the fractional dynamics of interactions and constraints into the geometry of curve flows and solitonic hierarchies.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 850-856 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Yun-Yun Xu

Abstract The steady state response of a fractional order vibration system subject to harmonic excitation was studied by using the fractional derivative operator ${}_{-\infty} D_t^\beta,$where the order β is a real number satisfying 0 ≤ β ≤ 2. We derived that the fractional derivative contributes to the viscoelasticity if 0 < β < 1, while it contributes to the viscous inertia if 1 < β < 2. Thus the fractional derivative can represent the “spring-pot” element and also the “inerterpot” element proposed in the present article. The viscosity contribution coefficient, elasticity contribution coefficient, inertia contribution coefficient, amplitude-frequency relation, phase-frequency relation, and influence of the order are discussed in detail. The results show that fractional derivatives are applicable for characterizing the viscoelasticity and viscous inertia of materials.


Author(s):  
Temirkhan Aleroev ◽  
Hedi Aleroeva ◽  
Lyudmila Kirianova

In this paper, we give a formula for computing the eigenvalues of the Dirichlet problem for a differential equation of second-order with fractional derivatives in the lower terms. We obtained this formula using the perturbation theory for linear operators. Using this formula we can write out the system of eigenvalues for the problem under consideration.


Sign in / Sign up

Export Citation Format

Share Document