scholarly journals Associating Stochastic Modelling of Flow Sequences With Climatic Trends

Author(s):  
Sandhya Patidar ◽  
Eleanor Tanner ◽  
Bankaru-Swamy Soundharajan ◽  
Bhaskar Sen Gupta

Water is essential to all life-forms including various ecological, geological, hydrological, and climatic processes/activities. With changing climate, associated El Nino/Southern Oscillation (ENSO) events appear to stimulate highly uncertain patterns of precipitation (P) and evapotranspiration (EV) processes across the globe. Changes in P and EV patterns are highly sensitive to temperature variation and thus also affecting natural streamflow processes. This paper presents a novel suite of stochastic modelling approaches for associating streamflow sequences with climatic trends. The present work is built upon a stochastic modelling framework HMM_GP that integrates a Hidden Markov Model with a Generalised Pareto distribution for simulating synthetic flow sequences. The GP distribution within HMM_GP model is aimed to improve the model's efficiency in effectively simulating extreme events. This paper further investigated the potentials of Generalised Extreme Value Distribution (EVD) coupled with an HMM model within a regression-based scheme for associating impacts of precipitation and evapotranspiration processes on streamflow. The statistical characteristic of the pioneering modelling schematic has been thoroughly assessed for their suitability to generate/predict synthetic river flows sequences for a set of future climatic projections. The new modelling schematic can be adapted for a range of applications in the area of hydrology, agriculture and climate change.

Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 255
Author(s):  
Sandhya Patidar ◽  
Eleanor Tanner ◽  
Bankaru-Swamy Soundharajan ◽  
Bhaskar SenGupta

Water is essential to all lifeforms including various ecological, geological, hydrological, and climatic processes/activities. With the changing climate, associated El Niño/Southern Oscillation (ENSO) events appear to stimulate highly uncertain patterns of precipitation (P) and evapotranspiration (E) processes across the globe. Changes in P and EV patterns are highly sensitive to temperature (T) variation and thus also affect natural streamflow processes. This paper presents a novel suite of stochastic modelling approaches for associating streamflow sequences with climatic trends. The present work is built upon a stochastic modelling framework (HMM_GP) that integrates a hidden Markov model (HMM) with a generalised Pareto (GP) distribution for simulating synthetic flow sequences. The GP distribution within the HMM_GP model aims to improve the model’s efficiency in effectively simulating extreme events. This paper further investigated the potential of generalised extreme value distribution (GEV) coupled with an HMM model within a regression-based scheme for associating the impacts of precipitation and evapotranspiration processes on streamflow. The statistical characteristic of the pioneering modelling schematic was thoroughly assessed for its suitability to generate and predict synthetic river flow sequences for a set of future climatic projections, specifically during ENSO events. The new modelling schematic can be adapted for a range of applications in hydrology, agriculture, and climate change.


2013 ◽  
Vol 26 (13) ◽  
pp. 4710-4724 ◽  
Author(s):  
Michael Mayer ◽  
Kevin E. Trenberth ◽  
Leopold Haimberger ◽  
John T. Fasullo

Abstract The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.


2011 ◽  
Vol 5 (4) ◽  
pp. 737-750 ◽  
Author(s):  
B. De Boeck ◽  
O. Thas ◽  
J. C. W. Rayner ◽  
D. J. Best

2021 ◽  
Author(s):  
Hanna Heidemann ◽  
Joachim Ribbe ◽  
Benjamin J. Henley ◽  
Tim Cowan ◽  
Christa Pudmenzky ◽  
...  

<p>This research analyses the observed relationship between eastern and central Pacific El Niño Southern Oscillation (ENSO) events and Australian monsoon rainfall (AUMR) on a decadal timescale during the December to March monsoon months. To assess the decadal influence of the different flavours of ENSO on the AUMR, we focus on the phases of the Interdecadal Pacific Oscillation (IPO) over the period 1920 to 2020.  The AUMR is characterized by substantial decadal variability, which appears to be linked to the positive and negative phases of the IPO. During the past two historical negative IPO phases, significant correlations have been observed between central Pacific sea surface temperature (SST) anomalies and AUMR over both the northeast and northwest of Australia. This central Pacific SST-AUMR relationship has strengthened from the first negative IPO phase (mid-1940s to the mid-1970s) to the second (late 1990s to mid-2010s), while the eastern Pacific SST-AUMR influence has weakened. Composite rainfall anomalies over Australia reveal a different response of AUMR to central Pacific El Niño/La Niña and eastern Pacific La Niña events during positive IPO and negative IPO phases. This research clearly shows that ENSO's influence on AUMR is modulated by Pacific decadal variability, however this teleconnection, in itself, can change between similar decadal Pacific states.  Going forward, as decadal prediction systems improve and become more mainstream, the IPO phase could be used as a potential source for decadal predictability of the tendency of AUMR.  </p>


2021 ◽  
Author(s):  
Markus Deppner ◽  
Bedartha Goswami

<p>The impact of the El Niño Southern Oscillation (ENSO) on rivers are well known, but most existing studies involving streamflow data are severely limited by data coverage. Time series of gauging stations fade in and out over time, which makes hydrological large scale and long time analysis or studies of rarely occurring extreme events challenging. Here, we use a machine learning approach to infer missing streamflow data based on temporal correlations of stations with missing values to others with data. By using 346 stations, from the “Global Streamflow Indices and Metadata archive” (GSIM), that initially cover the 40 year timespan in conjunction with Gaussian processes we were able to extend our data by estimating missing data for an additional 646 stations, allowing us to include a total of 992 stations. We then investigate the impact of the 6 strongest El Niño (EN) events on rivers in South America between 1960 and 2000. Our analysis shows a strong correlation between ENSO events and extreme river dynamics in the southeast of Brazil, Carribean South America and parts of the Amazon basin. Furthermore we see a peak in the number of stations showing maximum river discharge all over Brazil during the EN of 1982/83 which has been linked to severe floods in the east of Brazil, parts of Uruguay and Paraguay. However EN events in other years with similar intensity did not evoke floods with such magnitude and therefore the additional drivers of the 1982/83  floods need further investigation. By using machine learning methods to infer data for gauging stations with missing data we were able to extend our data by almost three-fold, revealing a possible heavier and spatially larger impact of the 1982/83 EN on South America's hydrology than indicated in literature.</p>


2014 ◽  
Vol 10 (5) ◽  
pp. 1857-1869 ◽  
Author(s):  
L.-C. Wang ◽  
H. Behling ◽  
T.-Q. Lee ◽  
H.-C. Li ◽  
C.-A. Huh ◽  
...  

Abstract. We reconstructed paleoenvironmental changes from a sediment archive of a lake in the floodplain of the Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated past floods, typhoons, and agricultural activities in this area which are sensitive to the hydrological conditions in the western Pacific. Considering the high sedimentation rates with low microfossil preservations in our sedimentary record, multiple flood events were. identified during the period AD 100–1400. During the Little Ice Age phase 1 (LIA 1 – AD 1400–1620), the abundant occurrences of wetland plant (Cyperaceae) and diatom frustules imply less flood events under stable climate conditions in this period. Between AD 500 and 700 and the Little Ice Age phase 2 (LIA 2 – AD 1630–1850), the frequent typhoons were inferred by coarse sediments and planktonic diatoms, which represented more dynamical climate conditions than in the LIA 1. By comparing our results with the reconstructed changes in tropical hydrological conditions, we suggested that the local hydrology in NE Taiwan is strongly influenced by typhoon-triggered heavy rainfalls, which could be influenced by the variation of global temperature, the expansion of the Pacific warm pool, and the intensification of El Niño–Southern Oscillation (ENSO) events.


2006 ◽  
Vol 19 (16) ◽  
pp. 3863-3881 ◽  
Author(s):  
E. Manzini ◽  
M. A. Giorgetta ◽  
M. Esch ◽  
L. Kornblueh ◽  
E. Roeckner

Abstract The role of interannual variations in sea surface temperatures (SSTs) on the Northern Hemisphere winter polar stratospheric circulation is addressed by means of an ensemble of nine simulations performed with the middle atmosphere configuration of the ECHAM5 model forced with observed SSTs during the 20-yr period from 1980 to 1999. Results are compared to the 40-yr ECMWF Re-Analysis (ERA-40). Three aspects have been considered: the influence of the interannual SST variations on the climatological mean state, the response to El Niño–Southern Oscillation (ENSO) events, and the influence on systematic temperature changes. The strongest influence of SST variations has been found for the warm ENSO events considered. Namely, it has been found that the large-scale pattern associated with the extratropical tropospheric response to the ENSO phenomenon during northern winter enhances the forcing and the vertical propagation into the stratosphere of the quasi-stationary planetary waves emerging from the troposphere. This enhanced planetary wave disturbance thereafter results in a polar warming of a few degrees in the lower stratosphere in late winter and early spring. Consequently, the polar vortex is weakened, and the warm ENSO influence clearly emerges also in the zonal-mean flow. In contrast, the cold ENSO events considered do not appear to have an influence distinguishable from that of internal variability. It is also not straightforward to deduce the influence of the SSTs on the climatological mean state from the simulations performed, because the simulated internal variability of the stratosphere is large, a realistic feature. Moreover, the results of the ensemble of simulations provide weak to negligible evidence for the possibility that SST variations during the two decades considered are substantially contributing to changes in the polar temperature in the winter lower stratosphere.


Sign in / Sign up

Export Citation Format

Share Document