scholarly journals Unified Charge Vectors (UCV) Theory

Author(s):  
Noam Why

A grand unification of electroweak and strong forces is presented based on a new idea called Unified Charged Vectors. Using this new concept, it is shown that: The electroweak and strong forces can be unified into a single electro-weak-strong force. The various charges and coupling constants of fermions (like the electroweak mixing angle) can be predicted, rather than presupposed. The Lagrangian symmetries can be predicted rather than presupposed. The standard model Lagrangian can be cast into a simple unified form.

1998 ◽  
Vol 13 (38) ◽  
pp. 3099-3107 ◽  
Author(s):  
M. MALTONI ◽  
M. I. VYSOTSKY

It happens that s2 and ŝ2 are equal with 0.1% accuracy, though they are split by radiative corrections and a natural estimate for their difference is 1%. This degeneracy occurs only for mt value close to 170 GeV, so no deep physical reason can be attributed to it. However, another puzzle of the standard model, the degeneracy of [Formula: see text] and s2, is not independent of the previous one since a good physical reason exists for [Formula: see text] and ŝ2 degeneracy. We present explicit formulas which relate these three angles.


2012 ◽  
Vol 22 (1) ◽  
pp. 1-6
Author(s):  
Hoang Ngoc Long ◽  
Nguyen Thi Kim Ngan

Renormalization group equations of the 3-3-1 models with A4 and S4 flavor symmetries as the only intermediate gauge group between the standard model and the scale of unification of the three coupling constants are presented. We shall assume that there is no necessarily a group of grand unification at the scale of convergence of the couplings.


1992 ◽  
Vol 07 (09) ◽  
pp. 1853-1873 ◽  
Author(s):  
S. BANERJEE ◽  
S.N. GANGULI ◽  
A. GURTU

The four detectors ALEPH, DELPHI, L3 and OPAL have collected ≈550,000 Z0 decays during the LEP run in 1990. We have made model-independent simultaneous fits to the LEP data to determine the Z0 parameters. The mass and widths of Z0 are Mz=91.177± 0.006±0.02 (LEP) GeV , Γz=2.481±0.010 GeV , Γ had =1.734±0.010 GeV and Γ lept =83.0 ± 0.4 MeV . The number of ν families is determined to be Nν=3.01±0.05. Simultaneous fits are performed within the Standard Model framework to the LEP data and constraining the value of sin 2 θw from the [Formula: see text] colliders we get the following values for top mass, electroweak mixing angle sin 2 θw and the radiative correction [Formula: see text], sin 2 θw=0.230±0.004 and ∆r=0.056±0.011.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044010
Author(s):  
V. Ciulli

Recent results by the CMS experiment on Drell–Yan, W and multiboson events are presented, including in particular the measurement of the electroweak mixing angle, the differential distributions in Drell–Yan events, and the electroweak production of one and two vector bosons in association with two jets. No deviations from the Standard Model predictions are found and stringent bounds are set on anomalous triple and quartic gauge couplings.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1266-1277 ◽  
Author(s):  
WILLEM T. H. VAN OERS

Searches for parity violation in hadronic systems started soon after the evidence for parity violation in β-decay of 60 Co was presented by Madame Chien-Shiung Wu and in π and μ decay by Leon Lederman in 1957. The early searches for parity violation in hadronic systems did not reach the sensitivity required and only after technological advances in later years was parity violation unambiguously established. Within the meson-exchange description of the strong interaction, theory and experiment meet in a set of seven weak meson-nucleon coupling constants. Even today, after almost five decades, the determination of the seven weak meson-nucleon couplings is incomplete. Parity violation in nuclear systems is rather complex due to the intricacies of QCD. More straight forward in terms of interpretation are measurements of the proton-proton parity-violating analyzing power (normalized differences in scattering yields for positive and negative helicity incident beams), for which there exist three precision experiments (at 13.6, at 45, and 221 MeV). To-date, there are better possibilities for theoretical interpretation using effective field theory approaches. The situation with regard to the measurement of the parity-violating analyzing power or asymmetry in polarized electron scattering is quite different. Although the original measurements were intended to determine the electro-weak mixing angle, with the current knowledge of the electro-weak interaction and the great precision with which electro-weak radiative corrections can be calculated, the emphasis has been to study the structure of the nucleon, and in particular the strangeness content of the nucleon. A whole series of experiments (the SAMPLE experiment at MIT-Bates, the G0 experiment and HAPPEX experiments at Jefferson Laboratory (JLab), and the PVA4 experiment at MAMI) have indicated that the strange quark contributions to the charge and magnetization distributions of the nucleon are tiny. These measurements if extrapolated to zero degrees and zero momentum transfer have also provided a factor five improvement in the knowledge of the neutral weak couplings to the quarks. Choosing appropriate kinematics in parity-violating electron-proton scattering permits nucleon structure effects on the measured analyzing power to be precisely controlled. Consequently, a precise measurement of the ‘running’ of sin 2θw or the electro-weak mixing angle has become within reach. The [Formula: see text] experiment at Jefferson Laboratory is to measure this quantity to a precision of about 4%. This will either establish conformity with the Standard Model of quarks and leptons or point to New Physics as the Standard Model must be encompassed in a more general theory required, for instance, by a convergence of the three couplings (strong, electromagnetic, and weak) to a common value at the GUT scale. The upgrade of CEBAF at Jefferson Laboratory to 12 GeV, will allow a new measurement of sin 2θW in parity-violating electron-electron scattering with an improved precision to the current better measurement (the SLAC E158 experiment) of the ‘running’ of sin 2θW away from the Z0 pole. Preliminary design studies of such an experiment show that a precision comparable to the most precise individual measurements at the Z0 pole (to about ±0.00025) can be reached. The result of this experiment will be rather complementary to the [Formula: see text] experiment in terms of sensitivity to New Physics.


2014 ◽  
Vol 92 (12) ◽  
pp. 1501-1527 ◽  
Author(s):  
Carlos Castro

A Clifford Cl(5, C) unified gauge field theory formulation of conformal gravity and U(4) × U(4) × U(4) Yang–Mills in 4D, is reviewed along with its implications for the Pati–Salam (PS) group SU(4) × SU(2)L × SU(2)R, and trinification grand unified theory models of three fermion generations based on the group SU(3)C × SU(3)L × SU(3)R. We proceed with a brief review of a unification program of 4D gravity and SU(3) × SU(2) × U(1) Yang–Mills emerging from 8D pure quaternionic gravity. A realization of E8 in terms of the Cl(16) = Cl(8) ⊗ Cl(8) generators follows, as a preamble to F. Smith’s E8 and Cl(16) = Cl(8) ⊗ Cl(8) unification model in 8D. The study of chiral fermions and instanton backgrounds in CP2 and CP3 related to the problem of obtaining three fermion generations is thoroughly studied. We continue with the evaluation of the coupling constants and particle masses based on the geometry of bounded complex homogeneous domains and geometric probability theory. An analysis of neutrino masses, Cabbibo–Kobayashi–Maskawa quark-mixing matrix parameters, and neutrino-mixing matrix parameters follows. We finalize with some concluding remarks about other proposals for the unification of gravity and the Standard Model, like string, M, and F theories and noncommutative and nonassociative geometry.


2019 ◽  
Author(s):  
Vitaly Kuyukov

This paper analyses a method of producing the Higgs mass via the gravitational field. This approach has become very popular in recent years, as the consideration of other forces do not help in solving the problem of mass hierarchy. Not understand the difference between scales of the standard model and Grand unification theory. Here, we present a heuristic mechanism which eliminated this difference. The idea is that the density of the condensate of the Higgs is increased so that it is necessary to take into account self gravitational potential energy of the Higgs boson. The result is as follows. The mass of the Higgs is directly proportional to the cell density of the Higgs bosons. Or else the mass of the Higgs is inversely proportional to the cell volume, which is the Higgs boson in the condensate. The most interesting dimension of this cell condensation is equal to the scale of Grand unification. This formula naturally combines the scale of the standard model and Grand unification through gravitational condensation.


Author(s):  
Ivan A. Shershan ◽  
Tatiana V. Shishkina

In this paper the analysis of W-boson production process in high-energy electron-photon collisions as a tool to search for deviations from the Standard Model is considered. In particular, a set of extended gauge models, including anomalous multi-boson interactions, are discussed as a promising way for «new physics» study. A numerical analysis of the total cross sections of the processes was carried out. The lowest order radiative corrections in the soft-photon approximation within the Standard Model are taken into account. Calculations beyond the Standard Model was performed, the kinematic features of the cross sections were identified. The restrictions on the anomalous triple gauge boson coupling constants were analyzed and the kinematic areas to the search for their manifestations were obtained during the experiments at the International Linear Collider. The paper shows that the search for «new physics» effects based on electron-photon collisions around the W-boson production peak is the maximal promising. It was also shown that future experiments at high luminosity linear colliders will significantly clarify the constraints on anomalous gauge coupling constants.


Sign in / Sign up

Export Citation Format

Share Document