scholarly journals Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management using Geo-Informatics Approach

Author(s):  
Muhammad Mohsin Waqas ◽  
Muhammad Waseem ◽  
Sikandar Ali ◽  
Megersa Kebede Leta ◽  
Adnan Noor Shah ◽  
...  

Irrigation water management components evaluation is mandatory for sustainable irrigated agriculture production in the era of water scarcity. In this research spatio-temporal distribution of irrigation water components were evaluated at canal command area in Indus Basin Irrigation System (IBIS) using remote sensing based geo-informatics approach. Satellite derived MODIS product-based Surface Energy Balance Algorithm for Land (SEBAL) was used for the estimation of the Actual Evapotranspiration (ETa). Satellite derived SEBAL based ETa was calibrated and validated using the ground data-based advection aridity method (AA). Statistical analysis of the SEBAL based ETa and AA shows the mean 87.1 mm and 47.9 mm and, 100 mm and 77 mm, Standard deviation of 27.7 mm and 15.9 mm and, 34.9 mm and 16.1 mm, R of 0.93 and 0.94, NSE of 0.72 and 0.85, PBIASE -12.9 and -4.4, RMSE 34.9 and 5.76 for the Kharif and Rabi season, respectively. Rainfall data was acquired from the Tropical Rainfall Measuring Mission (TRMM). TRMM based rainfall was calibrated with the point observatory data of the Pakistan Metrological Department Stations. Canal water data was collected from the Punjab Irrigation department for the assessment of canal water availability. Water The water balance approach was applied in the unsaturated zone for the quantification of the gross and net Groundwater irrigation. Mmonthly variation of ETa with the minimum average value of 63.3 mm in January and the maximum average value of 110.6 mm in August was found. While, the average annual of four cropping years (2011-12 to 2014-15) ETa was found 899 mm. Average of the sum of Net Canal Water Use (NCWU) and Rainfall during the study period of four years was only 548 mm (36% of ETa) and this resulted the 739.6 mm of groundwater extraction. While the annual based variation in groundwater extraction of 632 mm and 780 mm was found. Seasonal analysis revealed 39% and 61% of groundwater extraction proportion during Rabi and Kharif season, respectively. The variation in four cropping year’s monthly groundwater extraction was found 28.7 mm to 120.3 mm. This variation was high in the 2011-12 to 2012-13 cropping year (0 mm to 148.7 mm), dependent upon the occurrence of rainfall and crop phenology. Net groundwater irrigation, estimated after incorporating the efficiencies was 503 mm year-1 on average for the four cropping years.

2021 ◽  
Vol 13 (15) ◽  
pp. 8607
Author(s):  
Muhammad Mohsin Waqas ◽  
Muhammad Waseem ◽  
Sikandar Ali ◽  
Megersa Kebede Leta ◽  
Adnan Noor Shah ◽  
...  

Spatio-temporal distribution of irrigation water components was evaluated at the canal command area in Indus Basin Irrigation System (IBIS) by using a remote sensing-based geo-informatics approach. Satellite-derived MODIS product-based Surface Energy Balance Algorithm for Land (SEBAL) was used for the estimation of the actual evapotranspiration (ETa). The ground data-based advection aridity method (AA) was used to calibrate and validate the model. Statistical analysis of the SEBAL based ETa and AA shows the mean values of 87.1 mm and 47.9 mm during Kharif season (May–November) and 100 mm and 77 mm during the Rabi Season (December–April). Mean NSEs of 0.72 and 0.85 and RMSEs 34.9 and 5.76 during the Kharif and the Rabi seasons were observed for ETa and AA, respectively. Rainfall data were calibrated with the point observatory data of the metrological stations. The average annual ETa was found 899 mm for defined four cropping years (2011–2012 to 2014–2015) with the minimum average value of 63.3 mm in January and the maximum average value of 110.6 mm in August. Average of the sum of net canal water use (NCWU) and rainfall during the study period of four years was 548 mm (36% of ETa). Seasonal analysis revealed 39% and 61% of groundwater extraction proportion during Rabi and Kharif seasons, dependent upon the occurrence of rainfall and crop phenology. Overall, the results provide insight into the interrelationships between key water resources management components and the variation of these through time, offering information to improve the strategic planning and management of available water resources in this region.


2020 ◽  
Vol 5 (1) ◽  
pp. 23-27
Author(s):  
Shoukat Ali Shah ◽  
Madeeha Kiran ◽  
Rabia Dars ◽  
Aleena Nazir ◽  
Shaharyar Hassan Ashrafani

Developing a gauge-discharge relationship in rivers, canals, and minor flow is vital for controlling floods, managing water resources, Spatio-temporal analysis, socio-economic development, and sustaining the ecosystem. Accurate and consistent data of irrigation networks are perilous to scheduling and managing for accurate application of irrigation water. Most of the hydrologic engineering activities like hydraulics structure, designs, flood monitoring, surplus water, reservoir, canal, and minor’s operation depend on flowing water derived from Rating Curve (RC). The effective management of irrigation water is necessary for crop water requirements and seepage losses estimation. In this context, the present study showed the actual field level work tested at two minors of the Ghotki feeder canal namely Pyaro minor and Dilwaro minor. The main object of the study is to develop gauge-discharge relation and development of RC and Rating Table (RT). The current meter was used for taking discharge measurements with the area velocity technique in both minors. Moreover, stage-discharge RC and RT were developed for different flows of water for both minors in Origin Software. From the calculated results, Power equations were developed for both minors for the actual requirement of crop water in the command area. The results of the study calculated in RT of Piyaro minor between 0.5-5ft stage gave discharge 0.053 cusecs to 90.616 cusecs. While the RT of Dilwaro minor showed the range between 0.5ft-4ft stage gave 26.575cusec to 168.888 cusecs. Hence, the present study suggested that for both minors, automatic gauging stations should be established for the actual demand of irrigation water in the command area and di-siltation should be done on both minors to make availability of water at the tail section.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1429 ◽  
Author(s):  
Muhammad Muzammil ◽  
Azlan Zahid ◽  
Lutz Breuer

Agriculture of Pakistan relies on the Indus basin, which is facing severe water scarcity conditions. Poor irrigation practices and lack of policy reforms are major threats for water and food security of the country. In this research, alternative water-saving strategies are evaluated through a high spatio-temporal water footprint (WF) assessment (1997–2016) for the Punjab and Sindh provinces, which cover an irrigated area of 17 million hectares in the Indus basin of Pakistan. The SPARE:WATER model is used as a spatial decision support tool to calculate the WF and establish alternative management plans for more sustainable water use. The average water consumption (WFarea) is estimated to 182 km3 yr−1, composed of 75% blue water (irrigation water from surface water and groundwater sources), 17% green water (precipitation) and 8% grey water (water used to remove soil salinity or dilute saline irrigation water). Sugarcane, cotton, and rice are highly water-intensive crops, which consume 57% of the annual water use. However, WFarea can be reduced by up to 35% through optimized cropping patterns of the existing crops with the current irrigation settings and even by up to 50% through the combined implementation of optimal cropping patterns and improved irrigation technologies, i.e., sprinkler and drip irrigation. We recommend that the economic impact of these water-saving strategies should be investigated in future studies to inform stakeholders and policymakers to achieve a more sustainable water policy for Pakistan.


2021 ◽  
Vol 13 (16) ◽  
pp. 8695
Author(s):  
Naveed Ahmed ◽  
Haishen Lü ◽  
Shakeel Ahmed ◽  
Ghulam Nabi ◽  
Muhammad Abdul Wajid ◽  
...  

Sustainable management of canal water through optimum water allocation is the need of the modern world due to the rapid rise in water demand and climatic variations. The present research was conducted at the Chaj Doab, Indus Basin Irrigation System (IBIS) of Pakistan, using the WEAP (Water Evaluation and Planning) model. Six different scenarios were developed, and the results showed that the current available surface water is not sufficient to meet crop water demands. The Lower Jhelum Canal (LJC) command area is more sensitive to water scarcity than the Upper Jhelum Canal (UJC). The future (up to 2070) climate change scenarios for RCP 4.5 and 8.5 showed a decrease in catchment reliability up to 26.80 and 26.28% for UJC as well as 27.56 and 27.31% for LJC catchment, respectively. We concluded that scenario 3 (irrigation efficiency improvement through implementation of a high efficiency irrigation system, canal lining, reduction and replacement of high delta crops with low delta crops) was sufficient to reduce the canal water deficit in order to optimize canal water allocation. Improvement in the irrigation system and cropping area should be optimized for efficient canal water management.


2013 ◽  
Vol 38 (7) ◽  
pp. 1286-1294 ◽  
Author(s):  
Zong-Xin LI ◽  
Yuan-Quan CHEN ◽  
Qing-Cheng WANG ◽  
Kai-Chang LIU ◽  
Wang-Sheng GAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document