scholarly journals Adjusting the Structure of β-cyclodextrin to Improve Complexation of Anthraquinone-derived Drugs

Author(s):  
Agata Krzak ◽  
Olga Swiech ◽  
Maciej Majdecki ◽  
Renata Bilewicz

β-cyclodextrin (CD) derivatives containing aromatic triazole ring were studied as potential carriers of drugs containing an anthraquinone moiety in the structure: anthraquinone-2-sulfonic acid (AQ2S), anthraquinone-2-carboxylic acid (AQ2CA) and a common anthracycline, daunorubicin (DNR). UV-Vis and voltammetry measurements were carried out to determine the solubilities and stability constants of the complexes formed and revealed the unique properties of the chosen CDs as effective pH dependent drug complexing agents. The stability constants of the drug complexes with the CDs containing triazole: βCDLip and βCDGAL were significantly larger than with the native βCD. The AQ2CA and AQ2S drugs are ill-soluble and their solubilities increased as the result of complex formation with βCDLip and βCDGAL ligands. AQ2CA, AQ2S were negatively charged at pH 7.4 and therefore they were less prone to form inclusion complex with the hydrophobic CD cavity than at pH 3 (characteristic of gastric juices) when they were protonated. βCDTriazole and βCDGAL ligands were found to form weaker inclusion complexes with the positively charged drug DNR at acidic pH (pH 5.5) than in the neutral medium (pH 7.4) when the drug dissociates to the neutral, uncharged form. This pH dependence is favorable for anti-tumor applications.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7205
Author(s):  
Agata Krzak ◽  
Olga Swiech ◽  
Maciej Majdecki ◽  
Piotr Garbacz ◽  
Paulina Gwardys ◽  
...  

β-Cyclodextrin (CD) derivatives containing an aromatic triazole ring were studied as potential carriers of the following drugs containing an anthraquinone moiety: anthraquinone-2-sulfonic acid (AQ2S); anthraquinone-2-carboxylic acid (AQ2CA); and a common anthracycline, daunorubicin (DNR). UV-Vis and voltammetry measurements were carried out to determine the solubilities and association constants of the complexes formed, and the results revealed the unique properties of the chosen CDs as effective pH-dependent drug complexing agents. The association constants of the drug complexes with the CDs containing a triazole and lipoic acid (βCDLip) or galactosamine (βCDGAL), were significantly larger than that of the native βCD. The AQ2CA and AQ2S drugs were poorly soluble, and their solubilities increased as a result of complex formation with βCDLip and βCDGAL ligands. AQ2CA and AQ2S are negatively charged at pH 7.4. Therefore, they were less prone to form an inclusion complex with the hydrophobic CD cavity than at pH 3 (characteristic of gastric juices) when protonated. The βCDTriazole and βCDGAL ligands were found to form weaker inclusion complexes with the positively charged drug DNR at an acidic pH (pH 5.5) than in a neutral medium (pH 7.4) in which the drug dissociates to its neutral, uncharged form. This pH dependence is favorable for antitumor applications.


1962 ◽  
Vol 15 (3) ◽  
pp. 457 ◽  
Author(s):  
HJ de Bruin ◽  
D Kairaitis ◽  
RB Temple

The extraction of beryllium from aqueous solution by long-chain tertiary amines has been observed in the presence of ligands giving rise to anionic complexes. The nature of the oxalate complex extracted by solutions of tri-iso-octylamine in chloroform has been studied in detail and the species formed in the organic phase were shown to have the composition Be(C2O4)2.{NH(i-C8H15)3}2. The complexes formed in aqueous solution between beryllium and several anionic complexing agents have been examined by the method of pH-titration. Conditional stability constants have been obtained for the complexes formed with oxalic, malonic, maleic, succinic, phthalic, and salicylic acids. Differences in their extractabilities can be explained semiquantitatively with the help of the stability constants and the acid association constants of the complexing agents.


1997 ◽  
Vol 261 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Nadav Navon ◽  
Alexandra Masarwa ◽  
Haim Cohen ◽  
Dan Meyerstein

1985 ◽  
Vol 50 (3) ◽  
pp. 581-599 ◽  
Author(s):  
Petr Vaňura ◽  
Emanuel Makrlík

Extraction of microamounts of Sr2+ and Ba2+ (henceforth M2+) from the aqueous solutions of perchloric acid (0.0125-1.02 mol/l) by means of the nitrobenzene solutions of dicarbolide (0.004-0.05 mol/l of H+{Co(C2B9H11)2}-) was studied in the presence of monoglyme (only Ba2+), diglyme, triglyme, and tetraglyme (CH3O-(CH2-CH2O)nCH3, where n = 1, 2, 3, 4). The distribution of glyme betweeen the aqueous and organic phases, the extraction of the protonized glyme molecule HL+ together with the extraction of M2+ ion and of the glyme complex with the M2+ ion, i.e., ML2+ (where L is the molecule of glyme), were found to be the dominating reactions in the systems under study. In the systems with tri- and tetraglymes the extraction of H+ and M2+ ions solvated with two glyme molecules, i.e., the formation of HL2+ and ML22+ species, can probably play a minor role. The values of the respective equilibrium constants, of the stability constants of complexes formed in the organic phase, and the theoretical separation factors αBa/Sr were determined. The effect of the ligand structure on the values of extraction and stability constants in the organic phase is discussed.


2012 ◽  
Vol 239-240 ◽  
pp. 1573-1576
Author(s):  
Zhu Qing Gao ◽  
Xiao Dong Cai ◽  
Kai Cheng Ling

At different temperatures, the protonation constants of tannic acid and the complex apparent stability constants between tannic acid and VO2+ were determined by using pH potentimetric method. The results showed that the protonation constants and the complex apparent stability constants slightly decreased with the raising temperature. In accordance with the pH value in the tannin extract technology, the conditional stability constants of the complex were calculated on the basis of the acid effect of tannic acid and the hydrolysis effect of VO2+. It was found that pH greatly affected the stability constants of the complex , so pH must be strictly controlled in the tannin extract technology.


Sign in / Sign up

Export Citation Format

Share Document