pH dependence of the stability constants of copper(I) complexes with fumaric and maleic acids in aqueous solutions

1997 ◽  
Vol 261 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Nadav Navon ◽  
Alexandra Masarwa ◽  
Haim Cohen ◽  
Dan Meyerstein
1977 ◽  
Vol 55 (14) ◽  
pp. 2613-2619 ◽  
Author(s):  
M. S. El-Ezaby ◽  
M. A. El-Dessouky ◽  
N. M. Shuaib

The interactions of Ni(II) and Co(II) with 2-pyridinecarboxaldehyde have been investigated in aqueous solutions at μ = 0.10 M (KNO3) at 30 °C. The stability constants of different complex equilibria have been determined using potentiometric methods. Spectrophotometric methods were also used in the case of the nickel(II) – 2-pyridinecarboxaldehyde system. It was concluded that nickel(II) and cobalt(II), analogous to copper(II), enhance hyrdation of 2-pyridinecarboxaldehyde prior to deprotonation of one of the geminal hydroxy groups. Complex species of 1:1 as well as 1:2 metal ion to ligand composition exist under the experimental conditions used.


1974 ◽  
Vol 13 (6) ◽  
pp. 1434-1437 ◽  
Author(s):  
Sidney. Gifford ◽  
Wayne. Cherry ◽  
Joe. Jecmen ◽  
Mike. Readnour

2016 ◽  
Vol 45 (30) ◽  
pp. 11968-11975 ◽  
Author(s):  
Phuong V. Dau ◽  
Zhicheng Zhang ◽  
Phuong D. Dau ◽  
John K. Gibson ◽  
Linfeng Rao

Three amine-functionalized diamide ligands form tridentate complexes with Nd3+ in aqueous solutions. The stability constants of the complexes follow the order of the ligand basicity that can be tuned by different substitutional groups.


Author(s):  
Alexandr I. Lytkin ◽  
Natalya V. Chernyavskaya ◽  
Darya K. Smirnova

Lanthanides have a high affinity toward ligands containing donor oxygen atoms, especially amino acids and complexons. The study of the processes of complexation of amino acids with f-element cations provides valuable information for solving problems of supramolecular chemistry, molecular recognition and chiral sensitivity of biological substrates. As a rule, f-elements are not components of biopolymers, but they are spectral label probes, which are important in the bioinorganic chemistry of metals. Quantitative estimation of the stability of complexes is necessary, first of all, to search for an internal connection between the constants themselves and then to find correlations between the stability of complexes and the properties of the complexing agent, the ligand, and the system as a whole. Such correlation dependencies make it possible to calculate a priori, or at least estimate the stability constants of new complexes, and also to better understand the influence of the nature of the chemical bond and the properties of the system as a whole on the formation and stability of complex compounds. In the present work, the complexation of neodymium, lanthanum with L-asparaginat ion and samarium, cerium with L-leucinat ion at 298.15 K and ionic strength values of 0.5 mol/l was studied by potentiometric titration and the stability constants of the complexes formed were determined. The values of the stability constants found allow us to perform rigorous thermodynamic calculations of the equilibria of these amino acids in salt solutions. The data obtained, in particular, can be used to reliably interpret the results of calorimetric studies of the complexation of lanthanides with the participation of the studied amino acids.Forcitation:Lytkin A.I., Chernyavskaya N.V., Smirnova D.K. Stability constants of L-asparagine and L-leucine complexes with some lanthanide in aqueous solutions at 298.15 K. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 1. P. 37-41


1980 ◽  
Vol 45 (10) ◽  
pp. 2632-2636
Author(s):  
Alois Fidler ◽  
Jiří Čeleda

The stability constants, Kp0, of ion pairs M2+.[Fe(CN)6]4- and their equivalent conductivities, λp0, at infinite dilution were evaluated by means of two-parameter fitting from the conductivities measured in very diluted aqueous solutions of double hexacyanoferrates of the type K2M(II).[Fe(CN)6] at 25 °C with the use of the limiting Debye-Huckel formula for ionic activity coefficients and Onsager limiting formula for the conductivity of strong electrolytes extended to electrolyte mixtures. Thus, Kp0 = 0.66, 0.72, and 0.76 . 104 dm3/mol and λp0 = 46, 49, and 53 S cm2 /val, respectively.


1980 ◽  
Vol 58 (12) ◽  
pp. 1253-1257 ◽  
Author(s):  
Mian S. Sun ◽  
Donald K. Harriss ◽  
Vincent R. Magnuson

Activity corrections for ionic equilibria in aqueous solutions at 25 °C and ionic strengths up to 0.5 have been investigated. An empirical formula for activity corrections was generated by statistically fitting stability constant data for approximately 540 complexes, for which both thermodynamic and concentration stability constants were known, to a modified Debye – Hückel relationship. The general formula is[Formula: see text]χ > 0, where Δ log K is the difference in the logarithms of the stability constants at infinite dilution and finite I (I ≤ 0.5), and χ is an even integer dependent only on the stoichiometry and charge of the ions involved. Activity correction formulae for ionic equilibria involving classes of ligands (amino acid, inorganic, amine, and organic acid) also were developed. The general formula predicts stability constant corrections within 0.1 log unit for 87 % of the data used at ionic strength 0.1 and 64 % of the data at ionic strength 0.5. In addition, single ion activity coefficients as a function of ionic strength, 0 < I ≤ 0.5, are presented.


Sign in / Sign up

Export Citation Format

Share Document