Pyridine derivatives as complexing agents. XIII. The stability of the palladium(II) complexes with pyridine, 2,2′-bipyridyl, and 1,10-phenanthroline

1986 ◽  
Vol 113 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Giorgio Anderegg ◽  
Hans Wanner
1976 ◽  
Vol 30 (2) ◽  
pp. 200-204 ◽  
Author(s):  
F. M. Abdel Kerim ◽  
F. Abou El Fotouh

The ir absorption spectra of some pyridine derivatives-iodine complexes were measured in the region 400 to 1400 cm−1 and the results are discussed. The effect of complex formation on the intensities of some of the bands was investigated. The thermodynamic constants of these complexes were calculated. It was found that the stability of the complex depends to a large extent on the electronegativity as well as the position of the substituent on the pyridine nucleus. The structures of formed complexes are discussed.


1991 ◽  
Vol 69 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Frank R. Fronczek ◽  
Richard D. Gandour ◽  
Thomas M. Fyles ◽  
Philippa J. Hocking ◽  
Susan J. McDermid ◽  
...  

The synthesis of crown ethers derived from meso-tartaric acid was investigated. The sodium salt of the bis(dimethylamide) of meso-tartaric acid reacted with diethylene glycol ditosylate to give a mixture of 18-crown-6 tetraamide and 27-crown-9 hexaamide crown ethers. The 2R,3S,11S,12R 18-crown-6 isomer crystallized in triclinic space group [Formula: see text] (a = 7.557(2), b = 8.866(2), c = 10.4133(13) Å, α = 94.13(2), β = 95.86(2), γ = 99.26(2)°, R = 0.040 for 2090 observed of 3129 unique reflections). The structures of the remaining products were then assigned from the NMR spectra. The solution conformations of the amide crown ethers were examined by NMR, and provide a rationale for the product distribution obtained. One of the 18-crown-6 isomers and a mixture of the two 27-crown-9 isomers were hydrolyzed to the respective crown ether carboxylic acids, and the stability constants for complexation of cations were determined by potentiometric titration. The meso tetra- and hexacarboxylates are remarkably nonselective and inefficient cation complexing agents, compared to related crown ethers from R,R-(+)-tartaric acid, due to the unfavorable conformational control exerted by the tartaro units. Key words: crown ether synthesis, complexation, crown ether conformation, meso-tartaric acid, crystal structure.


1986 ◽  
Vol 18 (1) ◽  
pp. 19-29 ◽  
Author(s):  
I. Licskó ◽  
I. Takács

It has been established in laboratory model experiments that the removal of dissolved heavyimetals from wastewaters is rendered more difficult in the presence of colloid-stabilizing agents. This unfavourable effect can be eliminated by the addition of Mg2+ ions and the adjustment to a fairly high pH. By increasing the concentration of Mg2+ ions, the pH necessary for destroying the stability of colloidal dispersion can be lowered. These findings also apply to the combined removal of different heavy metals (Cu, Zn, Cr(III), Ni, Cd). In alkaline conditions, in the presence of ammonium salts, some heavy metals (Cu, Zn, Ni) form high stability amine complexes. A higher pH is necessary for the breakdown of these complexes and the satisfactory removal of heavy metals.


1962 ◽  
Vol 15 (3) ◽  
pp. 457 ◽  
Author(s):  
HJ de Bruin ◽  
D Kairaitis ◽  
RB Temple

The extraction of beryllium from aqueous solution by long-chain tertiary amines has been observed in the presence of ligands giving rise to anionic complexes. The nature of the oxalate complex extracted by solutions of tri-iso-octylamine in chloroform has been studied in detail and the species formed in the organic phase were shown to have the composition Be(C2O4)2.{NH(i-C8H15)3}2. The complexes formed in aqueous solution between beryllium and several anionic complexing agents have been examined by the method of pH-titration. Conditional stability constants have been obtained for the complexes formed with oxalic, malonic, maleic, succinic, phthalic, and salicylic acids. Differences in their extractabilities can be explained semiquantitatively with the help of the stability constants and the acid association constants of the complexing agents.


Author(s):  
Agata Krzak ◽  
Olga Swiech ◽  
Maciej Majdecki ◽  
Renata Bilewicz

β-cyclodextrin (CD) derivatives containing aromatic triazole ring were studied as potential carriers of drugs containing an anthraquinone moiety in the structure: anthraquinone-2-sulfonic acid (AQ2S), anthraquinone-2-carboxylic acid (AQ2CA) and a common anthracycline, daunorubicin (DNR). UV-Vis and voltammetry measurements were carried out to determine the solubilities and stability constants of the complexes formed and revealed the unique properties of the chosen CDs as effective pH dependent drug complexing agents. The stability constants of the drug complexes with the CDs containing triazole: βCDLip and βCDGAL were significantly larger than with the native βCD. The AQ2CA and AQ2S drugs are ill-soluble and their solubilities increased as the result of complex formation with βCDLip and βCDGAL ligands. AQ2CA, AQ2S were negatively charged at pH 7.4 and therefore they were less prone to form inclusion complex with the hydrophobic CD cavity than at pH 3 (characteristic of gastric juices) when they were protonated. βCDTriazole and βCDGAL ligands were found to form weaker inclusion complexes with the positively charged drug DNR at acidic pH (pH 5.5) than in the neutral medium (pH 7.4) when the drug dissociates to the neutral, uncharged form. This pH dependence is favorable for anti-tumor applications.


2014 ◽  
Vol 10 ◽  
pp. 1999-2012 ◽  
Author(s):  
Muhammad Ali Sheraz ◽  
Sadia Hafeez Kazi ◽  
Sofia Ahmed ◽  
Zubair Anwar ◽  
Iqbal Ahmad

Riboflavin (RF), also known as vitamin B2, belongs to the class of water-soluble vitamins and is widely present in a variety of food products. It is sensitive to light and high temperature, and therefore, needs a consideration of these factors for its stability in food products and pharmaceutical preparations. A number of other factors have also been identified that affect the stability of RF. These factors include radiation source, its intensity and wavelength, pH, presence of oxygen, buffer concentration and ionic strength, solvent polarity and viscosity, and use of stabilizers and complexing agents. A detailed review of the literature in this field has been made and all those factors that affect the photo, thermal and chemical degradation of RF have been discussed. RF undergoes degradation through several mechanisms and an understanding of the mode of photo- and thermal degradation of RF may help in the stabilization of the vitamin. A general scheme for the photodegradation of RF is presented.


Sign in / Sign up

Export Citation Format

Share Document