scholarly journals SARS-CoV-2 and MERS-CoV Share the Furin Site CGG-CGG Genetic Footprint

Author(s):  
Antonio R. Romeu

The SARS-CoV-2 polybasic furin cleavage site is still a missing link. Remarkably, the two arginine residues of this protease recognition site are encoded by the CGG codon, which is rare in Betacoronavirus. However, the arginine pair is common at viral furin cleavage sites, but are not CGG-CGG encoded. The question is: Is this genetic footprint unique to the SARS-CoV-2? To address the issue, using Perl scripts, here I dissect in detail the NCBI Virus database in order to report the arginine dimers of the Betacoronavirus proteins. The main result reveals that a group of Middle East respiratory syndrome-related coronavirus (MERS-CoV) (isolates: camel/Nigeria/NVx/2016, host: Camelus dromedarius) also have the CGG-CGG arginine pair in the spike protein polybasic furin cleavage region. In addition, CGG-CGG encoded arginine pairs were found in the orf1ab polyprotein from HKU9 and HKU14 Betacoronavirus, as well as, in the nucleocapsid phosphoprotein from few SARS-CoV-2 isolates. To quantify the probability of finding the arginine CGG-CGG codon pair in Betacoronavirus, the likelihood ratio (LR) and a Markov model were defined. In conclusion, it is highly unlikely to find this genetic marker in betacoronaviruses wildlife, but they are there. Collectively, results shed light on recombination as origin of the virus CGG-CGG arginine pair in the S1/S2 cleavage site.


Author(s):  
Antonio R. Romeu

At present, the polybasic furin cleavage site on the spike glycoprotein of the SARS-CoV-2 is still a missing link. Remarkably, the two arginine residues this of site are encoded by the CGG arginine codon, which is rare in Betacoronavirus proteins. Arginine dimers are common at viral furin sites, but are not CGG-CGG encoded. The question is: Is that genetic footprint, encoding arginine pairs, unique to the SARS-CoV-2? To address the issue, using Perl scripts, here I dissect in detail the NCBI Virus database in order to report the arginine dimers that exist in Betacoronavirus proteins. As main result, a set of Middle East respiratory syndrome-related coronavirus (MERS-CoV) (isolates: camel/Nigeria/NVx/2016, host: Camelus dromedarius) have the CGG-CGG encoded arginine pair in the spike protein polybasic furin cleavage site. In addition, CGG-CGG encoded arginine pairs were also found in the orf1ab polyprotein from HKU9 and HKU14 Betacoronavirus, as well as, in the nucleocapsid phosphoprotein from few SARS-CoV-2 isolates. To quantify the presence probability of CGG-CGG arginine-arginine in Betacoronavirus, a First-Order Markov Chain was defined. It is highly unlikely to find it in betacoronaviruses wildlife, but it is there. Collectively, results shed light on recombination as origin of the virus CGG-CGG arginine dimer in the S1/S2 cleavage site.



Author(s):  
Antonio Ramón Romeu ◽  
Enric Ollé

The furin cleavage site, with an arginine doublet (RR), is one of the clues of the SARS-CoV-2 origin. This furin-RR is encoded by the CGG-CGG sequence. Because arginine can be encoded by six codons, in a previous work we found that in SARS-CoV-2, CGG was the minority arginine codon (3%). Also, analyzing the RR doublet from a large sample of furin cleavage sites of several kinds of viruses, we found that none of them were encoded by CGG-CGG. Here, we come back to the core of the matter, but from the perspective that in the human genome, in contrast, CGG is the majoroty arginine codon (21%). Here, we highlighted that the 6 arginine codons provide genetic markers to a traceability on the RR origin in the furin site, as well as, to weigh the probability of the theories about the origin of the virus.



2012 ◽  
Vol 302 (1) ◽  
pp. F1-F8 ◽  
Author(s):  
Christopher J. Passero ◽  
Gunhild M. Mueller ◽  
Michael M. Myerburg ◽  
Marcelo D. Carattino ◽  
Rebecca P. Hughey ◽  
...  

The epithelial sodium channel (ENaC) is activated by a unique mechanism, whereby inhibitory tracts are released by proteolytic cleavage within the extracellular loops of two of its three homologous subunits. While cleavage by furin within the biosynthetic pathway releases one inhibitory tract from the α-subunit and moderately activates the channel, full activation through release of a second inhibitory tract from the γ-subunit requires cleavage once by furin and then at a distal site by a second protease, such as prostasin, plasmin, or elastase. We now report that coexpression of mouse transmembrane protease serine 4 (TMPRSS4) with mouse ENaC in Xenopus oocytes was associated with a two- to threefold increase in channel activity and production of a unique ∼70-kDa carboxyl-terminal fragment of the γ-subunit, similar to the ∼70-kDa γ-subunit fragment that we previously observed with prostasin-dependent channel activation. TMPRSS4-dependent channel activation and production of the ∼70-kDa fragment were partially blocked by mutation of the prostasin-dependent cleavage site (γRKRK186QQQQ). Complete inhibition of TMPRSS4-dependent activation of ENaC and γ-subunit cleavage was observed when three basic residues between the furin and prostasin cleavage sites were mutated (γK173Q, γK175Q, and γR177Q), in addition to γRKRK186QQQQ. Mutation of the four basic residues associated with the furin cleavage site (γRKRR143QQQQ) also prevented TMPRSS4-dependent channel activation. We conclude that TMPRSS4 primarily activates ENaC by cleaving basic residues within the tract γK173-K186 distal to the furin cleavage site, thereby releasing a previously defined key inhibitory tract encompassing γR158-F168 from the γ-subunit.



2020 ◽  
Author(s):  
Z. Galen WO

The infectious 2019-nCoV virus, which caused the current novel coronavirus pneumonia epidemic outbreak, possesses a unique 4-Amino Acid insert at the boundary of the two subdomains (S1 and S2) of Spike protein based on multiple protein sequence alignment with the large SARS and SARS-related virus family. Using Bat CoV_RaTG13 Spike protein as reference (sharing 97% aa identity) the 4-amino acid insert can be identified as PRRA (AA position 681-684). The effect of the 4-AA insertion is the presence of a furin signature sequence motif (PRRARSV) at the boundary of S1 and S2 domains of spike protein. This sequence motif consists the required Arg residue for P1 and P4 position of Furin site. In addition, it contains Arg at P3 site as well as Ser at P1’ site of furin motif. This sequence motif matches Aerolysin furin site in FurinDB and was predicted to be moderately strong (score 0.62) by ProP, a protease cleavage site prediction program. This finding suggests that the infectious 2019-nCoV virus, unlike SARS viruses, may be processed via cellular furin recognition and cleavage of the spike protein before host cell membrane fusion and entry. This putative furin site in spike protein of 2019-nCoV virus, if proven to be functional, suggests the potential of looking into agents inhibiting furin as therapeutic mean for the treatment of the novel coronavirus pneumonia.



2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Helena Winstone ◽  
Maria Jose Lista ◽  
Alisha C. Reid ◽  
Clement Bouton ◽  
Suzanne Pickering ◽  
...  

ABSTRACT The cellular entry of severe acute respiratory syndrome-associated coronaviruses types 1 and 2 (SARS-CoV-1 and -2) requires sequential protease processing of the viral spike glycoprotein. The presence of a polybasic cleavage site in SARS-CoV-2 spike at the S1/S2 boundary has been suggested to be a factor in the increased transmissibility of SARS-CoV-2 compared to SARS-CoV-1 by facilitating maturation of the spike precursor by furin-like proteases in the producer cells rather than endosomal cathepsins in the target. We investigate the relevance of the polybasic cleavage site in the route of entry of SARS-CoV-2 and the consequences this has for sensitivity to interferons (IFNs) and, more specifically, the IFN-induced transmembrane (IFITM) protein family that inhibit entry of diverse enveloped viruses. We found that SARS-CoV-2 is restricted predominantly by IFITM2, rather than IFITM3, and the degree of this restriction is governed by route of viral entry. Importantly, removal of the cleavage site in the spike protein renders SARS-CoV-2 entry highly pH and cathepsin dependent in late endosomes, where, like SARS-CoV-1 spike, it is more sensitive to IFITM2 restriction. Furthermore, we found that potent inhibition of SARS-CoV-2 replication by type I but not type II IFNs is alleviated by targeted depletion of IFITM2 expression. We propose that the polybasic cleavage site allows SARS-CoV-2 to mediate viral entry in a pH-independent manner, in part to mitigate against IFITM-mediated restriction and promote replication and transmission. This suggests that therapeutic strategies that target furin-mediated cleavage of SARS-CoV-2 spike may reduce viral replication through the activity of type I IFNs. IMPORTANCE The furin cleavage site in the spike protein is a distinguishing feature of SARS-CoV-2 and has been proposed to be a determinant for the higher transmissibility between individuals, compared to SARS-CoV-1. One explanation for this is that it permits more efficient activation of fusion at or near the cell surface rather than requiring processing in the endosome of the target cell. Here, we show that SARS-CoV-2 is inhibited by antiviral membrane protein IFITM2 and that the sensitivity is exacerbated by deletion of the furin cleavage site, which restricts viral entry to low pH compartments. Furthermore, we find that IFITM2 is a significant effector of the antiviral activity of type I interferons against SARS-CoV-2 replication. We suggest that one role of the furin cleavage site is to reduce SARS-CoV-2 sensitivity to innate immune restriction, and thus, it may represent a potential therapeutic target for COVID-19 treatment development.



Author(s):  
Shuai Xia ◽  
Qiaoshuai Lan ◽  
Shan Su ◽  
Xinling Wang ◽  
Wei Xu ◽  
...  


2021 ◽  
Author(s):  
Michelle N Vu ◽  
Kumari Lokugamage ◽  
Jessica A Plante ◽  
Dionna Scharton ◽  
Bryan A Johnson ◽  
...  

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing 1,2. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates 3. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS, and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated4, and disruption its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site (the FCS, loop length, and glycosylation) are required for efficient SARS-CoV-2 replication and pathogenesis. 



2021 ◽  
Vol 118 (29) ◽  
pp. e2102775118
Author(s):  
Ying Wang ◽  
Chen Yang ◽  
Yutong Song ◽  
J. Robert Coleman ◽  
Marcin Stawowczyk ◽  
...  

Successfully combating the COVID-19 pandemic depends on mass vaccination with suitable vaccines to achieve herd immunity. Here, we describe COVI-VAC, the only live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine currently in clinical development. COVI-VAC was developed by recoding a segment of the viral spike protein with synonymous suboptimal codon pairs (codon-pair deoptimization), thereby introducing 283 silent (point) mutations. In addition, the furin cleavage site within the spike protein was deleted from the viral genome for added safety of the vaccine strain. Except for the furin cleavage site deletion, the COVI-VAC and parental SARS-CoV-2 amino acid sequences are identical, ensuring that all viral proteins can engage with the host immune system of vaccine recipients. COVI-VAC was temperature sensitive in vitro yet grew robustly (>107 plaque forming units/mL) at the permissive temperature. Tissue viral loads were consistently lower, lung pathology milder, and weight loss reduced in Syrian golden hamsters (Mesocricetus auratus) vaccinated intranasally with COVI-VAC compared to those inoculated with wild-type (WT) virus. COVI-VAC inoculation generated spike IgG antibody levels and plaque reduction neutralization titers similar to those in hamsters inoculated with WT virus. Upon challenge with WT virus, COVI-VAC vaccination reduced lung challenge viral titers, resulted in undetectable virus in the brain, and protected hamsters from almost all SARS-CoV-2–associated weight loss. Highly attenuated COVI-VAC is protective at a single intranasal dose in a relevant in vivo model. This, coupled with its large-scale manufacturing potential, supports its potential use in mass vaccination programs.



Author(s):  
Thomas P. Peacock ◽  
Daniel H. Goldhill ◽  
Jie Zhou ◽  
Laury Baillon ◽  
Rebecca Frise ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document