scholarly journals Synthetic Data Generation to Speed-up the Object Recognition Pipeline

Author(s):  
Damiano Perri ◽  
Marco Simonetti ◽  
Osvaldo Gervasi

This paper provides a methodology for the production of synthetic images for training neural networks to recognise shapes and objects. There are many scenarios in which it is difficult, expensive and even dangerous to produce a set of images that is satisfactory for the training of a neural network. The development of 3D modelling software has nowadays reached such a level of realism and ease of use that it seemed natural to explore this innovative path and to give an answer regarding the reliability of this method that bases the training of the neural network on synthetic images. The results obtained in the two proposed use cases, that of the recognition of a pictorial style and that of the recognition of migrants at sea, leads us to support the validity of the approach, provided that the work is conducted in a very scrupulous and rigorous manner, exploiting the full potential of the modelling software. The code produced, which automatically generates the transformations necessary for the data augmentation of each image, and the generation of random environmental conditions in the case of Blender and Unity3D software, is available under the GPL licence on GitHub. The results obtained lead us to affirm that through the good practices presented in the article, we have defined a simple, reliable, economic and safe method to feed the training phase of a neural network dedicated to the recognition of objects and features, to be applied to various contexts.

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Damiano Perri ◽  
Marco Simonetti ◽  
Osvaldo Gervasi

This paper provides a methodology for the production of synthetic images for training neural networks to recognise shapes and objects. There are many scenarios in which it is difficult, expensive and even dangerous to produce a set of images that is satisfactory for the training of a neural network. The development of 3D modelling software has nowadays reached such a level of realism and ease of use that it seemed natural to explore this innovative path and to give an answer regarding the reliability of this method that bases the training of the neural network on synthetic images. The results obtained in the two proposed use cases, that of the recognition of a pictorial style and that of the recognition of men at sea, lead us to support the validity of the approach, provided that the work is conducted in a very scrupulous and rigorous manner, exploiting the full potential of the modelling software. The code produced, which automatically generates the transformations necessary for the data augmentation of each image, and the generation of random environmental conditions in the case of Blender and Unity3D software, is available under the GPL licence on GitHub. The results obtained lead us to affirm that through the good practices presented in the article, we have defined a simple, reliable, economic and safe method to feed the training phase of a neural network dedicated to the recognition of objects and features to be applied to various contexts.


2020 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Rong Yang ◽  
Robert Wang ◽  
Yunkai Deng ◽  
Xiaoxue Jia ◽  
Heng Zhang

The random cropping data augmentation method is widely used to train convolutional neural network (CNN)-based target detectors to detect targets in optical images (e.g., COCO datasets). It can expand the scale of the dataset dozens of times while consuming only a small amount of calculations when training the neural network detector. In addition, random cropping can also greatly enhance the spatial robustness of the model, because it can make the same target appear in different positions of the sample image. Nowadays, random cropping and random flipping have become the standard configuration for those tasks with limited training data, which makes it natural to introduce them into the training of CNN-based synthetic aperture radar (SAR) image ship detectors. However, in this paper, we show that the introduction of traditional random cropping methods directly in the training of the CNN-based SAR image ship detector may generate a lot of noise in the gradient during back propagation, which hurts the detection performance. In order to eliminate the noise in the training gradient, a simple and effective training method based on feature map mask is proposed. Experiments prove that the proposed method can effectively eliminate the gradient noise introduced by random cropping and significantly improve the detection performance under a variety of evaluation indicators without increasing inference cost.


2007 ◽  
Author(s):  
Marek K. Jakubowski ◽  
David Pogorzala ◽  
Timothy J. Hattenberger ◽  
Scott D. Brown ◽  
John R. Schott

2004 ◽  
pp. 211-234 ◽  
Author(s):  
Lewis Girod ◽  
Ramesh Govindan ◽  
Deepak Ganesan ◽  
Deborah Estrin ◽  
Yan Yu

Mining ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 279-296
Author(s):  
Marc Elmouttie ◽  
Jane Hodgkinson ◽  
Peter Dean

Geotechnical complexity in mining often leads to geotechnical uncertainty which impacts both safety and productivity. However, as mining progresses, particularly for strip mining operations, a body of knowledge is acquired which reduces this uncertainty and can potentially be used by mining engineers to improve the prediction of future mining conditions. In this paper, we describe a new method to support this approach based on modelling and neural networks. A high-level causal model of the mining operations based on historical data for a number of parameters was constructed which accounted for parameter interactions, including hydrogeological conditions, weather, and prior operations. An artificial neural network was then trained on this historical data, including production data. The network can then be used to predict future production based on presently observed mining conditions as mining proceeds and compared with the model predictions. Agreement with the predictions indicates confidence that the neural network predictions are properly supported by the newly available data. The efficacy of this approach is demonstrated using semi-synthetic data based on an actual mine.


2021 ◽  
Author(s):  
Maria Lyssenko ◽  
Christoph Gladisch ◽  
Christian Heinzemann ◽  
Matthias Woehrle ◽  
Rudolph Triebel

Author(s):  
Daniel Jeske ◽  
Pengyue Lin ◽  
Carlos Rendon ◽  
Rui Xiao ◽  
Behrokh Samadi

Sign in / Sign up

Export Citation Format

Share Document