scholarly journals Pengaruh Berbagai Parameter Ekstraksi dalam Pemisahan Unsur Tanah Jarang dengan Metode Emulsion Liquid Membrane (ELM)

2021 ◽  
Vol 17 (1) ◽  
pp. 1
Author(s):  
Handias Meilinda ◽  
Novi Noviyanti ◽  
Anni Anggraeni ◽  
Diana Hendrati ◽  
Husein H Bahti

<p>Unsur Tanah Jarang (UTJ) adalah 15 elemen kelompok lantanida, ditambah skandium dan itrium yang termasuk kelompok aktinida. UTJ memiliki banyak manfaat di berbagai bidang. Sifat fisik dan kimia yang mirip antar UTJ membuatnya sulit dipisahkan sehingga pemisahan UTJ menarik dipelajari dengan berbagai macam metode, salah satunya adalah dengan menggunakan <em>Emulsion Liquid Membrane </em>(ELM). ELM merupakan metode pemisahan yang dikembangkan dari ekstraksi pelarut terdiri dari tiga fase, yaitu fase eksternal (fase umpan) yang berisi UTJ yang akan dipisahkan, fase internal (fase pengupasan), dan fase membran. Fase membran berisi surfaktan sebagai penstabil dan ligan yang akan membentuk kompleks dengan UTJ pada antarmuka fase umpan dan membawanya berdifusi ke dalam fase pengupasan. ELM merupakan metode efektif untuk pemisahan karena tahap ekstraksi dan pengupasan (<em>stripping</em>) terjadi secara bersamaan dalam satu tahap dan fase membrannya dapat digunakan kembali. Pemisahan UTJ menggunakan metode ELM dengan berbagai ligan, seperti D2EHPA, Cyanex 572, P204, dan (RO)2P(O)OPh-COOH dipengaruhi oleh berbagai parameter, seperti konsentrasi ligan, pH fase umpan, waktu pengadukan ekstraksi, kecepatan pengadukan ekstraksi, rasio fase umpan, konsentrasi fase pengupasan, konsentrasi surfaktan, dan konsentrasi fase umpan. Parameter tersebut diseleksi untuk mendapatkan kondisi optimum sehingga meningkatkan efisiensi ekstraksi dan pengupasan yang berbeda.</p><p><strong>Effect of Various Parameters in Separation of Rare Earth Elements using the Emulsion Liquid Membrane (ELM) Method. </strong>Rare Earth Elements (REEs) are 15 elements of the lanthanide group, plus scandium and yttrium, which belong to the actinide group. REEs have many benefits in various fields. Similar physical and chemical properties between REEs make it difficult to separate, thus REEs separation is interesting to study by various methods, one of which is by using an emulsion liquid membrane (ELM). ELM is a method developed from solvent extraction consisting of three phases: the external phase (feed phase) which contains REEs to be collected, the internal phase (stripping phase), and the membrane phase. The membrane phase contains surfactants as stabilizers and ligands which will form complexes with REEs in the feed phase and are designed to diffuse into the stripping phase. ELM is an effective method to involve because extraction and stripping occur together in one glass and the membrane phase can be reused. Separation of REEs using the ELM method with various ligands, such as D2EHPA, Cyanex 572, P204, and (RO)2P(O)OPh-COOH influenced by various parameters, such as ligand concentration, feed phase pH, extraction stirring time, extraction stirring speed, feed phase ratio, stripping phase concentration, surfactant concentration, and feed phase concentration. These parameters are selected to obtain optimum conditions thereby increasing the efficiency of different extraction and stripping.</p><p> </p>

2017 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Elsayed Ali Fouad

Abstract--The main objectives of this research were focused on extracting nickel ions from waste water using emulsion liquid membrane as well as determining the optimal conditions for the extraction process. Taguchi experimental design method was applied to determine the optimum extraction conditions. The controllable factors of the emulsion liquid membrane process were carrier; surfactant; and internal phase concentration, treating ratio, stirring time, and feed phase acidity were optimized. The contribution of each controllable factor was also explored. The results indicated the greatest effect of the carrier concentration in comparison to other parameters. The five other parameters slightly affected the extraction percentage of nickel. The optimum conditions for the extraction was found to be carrier concentration (M) of 0.25, surfactant concentration (v %) of 10, internal phase concentration (M) of 0.1, external / emulsion ratio (v/v) of 5, stirring time (min.) of 1, and feed phase pH of 0.5.


Membranes ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 133 ◽  
Author(s):  
Abdul Latif Ahmad ◽  
Zulfida Mohamad Hafis Mohd Shafie ◽  
Nur Dina Zaulkiflee ◽  
Wen Yu Pang

The aim of this study is to develop an Emulsion Liquid Membrane (ELM) system for the extraction of acetaminophen (ACTP). Firstly, ELM was formulated by the screening of liquid membrane components where the compatibility of diluent with other membrane phase components was investigated. The chosen carrier, diluent and stripping solution must comply with the reaction at the interface of the membrane to support the simultaneous processes of extraction and stripping. Therefore, parameters such as stripping agent concentration, volume ratio, initial concentration of feed phase and HCl concentration were investigated. A stable emulsion and maximum acetaminophen removal efficiency of 85% was achieved.


Author(s):  
Rudolf Kastori ◽  
Ivana Maksimovic ◽  
Tijana Zeremski-Skoric ◽  
Marina Putnik-Delic

Rare earth elements (REEs) form a chemically uniform group with very similar physical and chemical properties. The REEs include the elements scandium, yttrium, and the lanthanides from lanthanum to lutetium. They are widely distributed and present in all parts of the biosphere. REEs are required in industry, agriculture, medicine, biotechnology, environmental problems and many other fields. Lately, many experiments show their positive or negative, first of all nonspecific, effect on life processes of higher plants as well as growth and yield of cultivated species, but the physiological mechanisms are still not well understood. It has been determined that yttrium is widely distributed in plants, as well as that certain plant species uptake yttrium at different extent. Its highest accumulation is in the root and the leaf. Although yttrium was discovered more than two centuries ago, its effect on higher plants - their anatomical and morphological built, physiological and biochemical processes etc. - is very little known. One of the basic reasons is that yttrium, as well as other REEs elements, according to current knowledge, is not biogenic for higher plants and - wider - for live organisms. The objective of this paper is to concisely show previous knowledge about yttrium in the plant world.


2012 ◽  
Vol 496 ◽  
pp. 411-414 ◽  
Author(s):  
Du Shu Huang ◽  
Jin Gang Yu ◽  
Wei Liu ◽  
Zhao Long Huang ◽  
Na Wu

Supported emulsion liquid membrane using copper(Ⅱ) N-dodecyl-(L)- hydroxyproline as a chiral carrier was used as a novel technique to extract L-theanine. The effects of initial concentration of L-theanine in the feed phase, chiral carrier concentration in the membrane phase and salt concentration in receiving phase on extraction performance were studied and some optimum conditions were achieved.


2019 ◽  
Author(s):  
Adhi Kusumastuti ◽  
Widi Astuti ◽  
Nur Qudus

High demand on batik fabric significantly increased wastewater volume from batik home industries. Copper, being used as mordanting agent, available in the highest concentration in industrial textile wastewater. Emulsion liquid membrane (ELM) is promising selective method to recover solute. Taylor-Couette column (TCC) was proposedtoextractcopperinsteadofusingconventionalreactorthatdisturbsemulsion stability. Experiment was done by varying volume ratio of emulsion to feed phase, carrier and internal phase concentration. Extraction efficiency of>98% was obtained at volume ratio of emulsion to feed phase of 1:5, carrier concentration of 4 wt. %, and internal phase concentration of 0.1 M, respectively


2015 ◽  
Vol 2 (1) ◽  
pp. 45
Author(s):  
Olly Norita Tetra ◽  
Zaharasmi ◽  
Refinel

 ABSTRACT The removal of Cu(II) from aqueous solutions had been employed throught bulk liquid membrane techniques with arrange the optimization conditions of transport Cu(II) interface system. The optimum conditions of transport were found to be 3.1510-4 M of Cu(II) at pH 3  in the source phase,  17.510-4 M oxine dissolved into chloroform as membrane phase, 0,15 M H2SO4 as acceptor in  receiving phase, stirring rate was 340 rpm and  it was found that the transport of Cu(II) to receiving phase reached 97.41% during 6 hours. The effect of addition  oleat acid 1.57  10-3 M as surfactant  in membrane phase resulted a rapidly time of  transport Cu(II) to be 3 hours, wherein Cu(II) transported  into  the receive phase reached 97.83%  and remained  in feed phase 0%. Keywords: bulk liquid membrane, oxine, oleat acid, Cu(II) )transport


2020 ◽  
Vol 21 (4) ◽  
pp. 1-9
Author(s):  
Sawsan Abd Muslim Mohammed Albasri ◽  
Husna Salim Wahab

   The removal of Anit-Inflammatory drugs, namely; Acetaminophen (ACTP), from wastewater by bulk liquid membrane (BLM) process using Aliquat 336 (QCl) as a carrier was investigated. The effects of several parameters on the extraction efficiency were studied in this research, such as the initial feed phase concentration (10-50) ppm of ACTP, stripping phase (NaCl) concentration (0.3,0.5,0.7 M), temperature (30-50oC), the volume ratio of feed phase to membrane phase (200-400ml/80ml), agitation speed of the feed phase (75-125 rpm), membrane stirring speed (0, 100, 150 rpm), carrier concentration (1, 5, 9 wt%), the pH of feed (2, 4, 6, 8, 10), and solvent type (CCl4 and n-Heptane). The study shows that high extraction efficiency for ACTP of about 97% was achieved by a bulk liquid membrane at 50 ppm initial concentration of feed; stirring speed of feed phase 130 rpm; stirring speed of membrane phase 100rpm; 0.5 M NaCl concentration; carrier concentration 1wt%; volume ratio of 200ml feed:80ml membrane; feed pH of ACTP is 6,  and 50˚C. The transport kinetics was evaluated using a kinetic model with two consecutive first-order irreversible reactions. The kinetics of (ACTP) transport by bulk liquid membrane was investigated at the best experimental conditions. The activation energy values of the extraction and stripping processes were 1.733 and 1.826 kJ.mol−1. The activation energy confirms that the transport process from solutions is controlled by diffusion.


2021 ◽  
Vol 1021 ◽  
pp. 115-128
Author(s):  
Suheila Abd Alreda Akkar ◽  
Sawsan Abd Muslim Mohammed

This research introduced Intelligent Network's proposed design for predicting efficiency in the removal of phenol from wastewater by liquid membrane emulsion. In the inner phase of W / O emulsions, phenol extraction from an aqueous solution was investigated using emulsion liquid membrane prepared with kerosene as a membrane phase, Span 80 as a surfactant, and NaOH as a stripping agent. Experiments were conducted to investigate the effect of three emulsion composition variables, namely: surfactant concentration, membrane phase to-internal (VM / VI) volume ratio, and removal phase concentration in the internal phase, and two process parameters, feed phase agitation speed at organic acid extraction rates, and emulsion-to-feed volume ratio (VE / VF). More than 98% of phenol can be extracted in less than 5 minutes. This article describes compares the performance of different learning algorithms such as GD, RB, GDM, GDX, CG, and LM to predict the efficiency of phenol removal from wastewater through the liquid emulsion membrane. The proposed neural network consisted of (7, 11, 1) neurons in the input , hidden and output layers respectively feed forward ANN with various types of back propagation training algorithms were developed to model the emulsion liquid membrane removal of phenols. The values predicted for the neural network model are found in close agreement with the results of the batch experiment using MATLAB program with a correlation coefficient ( R2) of 0.999 and Mean Squared Error (MSE) of 0.004.


2019 ◽  
Vol 53 (8) ◽  
pp. 4490-4499 ◽  
Author(s):  
Ryan C. Smith ◽  
Ross K. Taggart ◽  
James C. Hower ◽  
Mark R. Wiesner ◽  
Heileen Hsu-Kim

2000 ◽  
Vol 6 (S2) ◽  
pp. 206-207
Author(s):  
Huifang Xu

Because of similar chemical properties of the rare earth elements (Ree), whole series of the Ree may occur in natural Ree-bearing crystals. Relative concentration of the Ree may vary as the crystallization environments change. Electron energy-dispersive spectroscopy (EDS) associated with TEM is unable to resolve Ree and other coexistence elements, such as Ba nd Ti, because of peak overlap and energy resolution (∼ 150 eV) of EDS. Figure A indicate multiple peaks from Ce only. The Cu peaks are from Cu grid holding the specimen. Electron energy-loss spectroscopy (EELS) with energy resolution of < 1 eV is able to resolve all Ree in natural Ree-bearing crystals.Natural carbonate crystals from a Ree ore deposit were investigated by using EELS associated with field emission-gun (FEG) TEM. The crystals are in a chemical series of BaCO3 - Ree(CO3)F [1]. In Figure B, EEL spectra A and B are from Ce-rich and La-rich bastnaesite (Ree(CO3)F), respectively; spectrum D is from cordylite (BaCO3 (Ree(CO3)F); spectrum E is from huanghoite (BaCO3 Ree(CO3)F), spectrum F is from BaCO3; spectrum C is from an unknown Ree-rich phase.


Sign in / Sign up

Export Citation Format

Share Document