scholarly journals Effect of Calcination Time on Lithium Ion Diffusion Coefficient of LiMg0.04Mn1.96O4 Prepared by a Solid-State Combustion Method

Author(s):  
Tao Feng ◽  
1997 ◽  
Vol 496 ◽  
Author(s):  
M. Inaba ◽  
S. Nohmi ◽  
A. Funabiki ◽  
T. Abe ◽  
Z. Ogumi

ABSTRACTThe electrochemical permeation method was applied to the determination of the diffusion coefficient of Li+ion (DLi+) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li+ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li+ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gaveDLi+ values on the order of 10−8cm2s−1. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li+ions, the former of which is the origin of the irreversible capacity of GC.


1999 ◽  
Vol 146 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Ping Yu ◽  
B. N. Popov ◽  
J. A. Ritter ◽  
R. E. White

2019 ◽  
Vol 21 (19) ◽  
pp. 9883-9888 ◽  
Author(s):  
Kecheng Zhang ◽  
Bingkai Zhang ◽  
Mouyi Weng ◽  
Jiaxin Zheng ◽  
Shunning Li ◽  
...  

Mechanism of Li-ions diffusion in a one-dimension tunnel of COF-5 and structure of the COF-5@LiClO4@THF system.


2015 ◽  
Vol 17 (34) ◽  
pp. 22235-22242 ◽  
Author(s):  
Shan Yang ◽  
Binggong Yan ◽  
Tao Li ◽  
Jing Zhu ◽  
Li Lu ◽  
...  

Band-excitation Electrochemical Strain Microscopy (BE-ESM) imaging and diffusion coefficient mapping of Li-rich cathode film.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Elena Makhonina ◽  
Lidia Pechen ◽  
Anna Medvedeva ◽  
Yury Politov ◽  
Aleksander Rumyantsev ◽  
...  

Li-rich Mn-based layered oxides are among the most promising cathode materials for next-generation lithium-ion batteries, yet they suffer from capacity fading and voltage decay during cycling. The electrochemical performance of the material can be improved by doping with Mg. However, the effect of Mg doping at different positions (lithium or transition metals) remains unclear. Li1.2Mn0.54Ni0.13Co0.13O2 (LR) was synthesized by coprecipitation followed by a solid-state reaction. The coprecipitation stage was used to introduce Mg in TM layers (sample LR-Mg), and the solid-state reaction (st) was used to dope Mg in Li layers (LR-Mg(st)). The presence of magnesium at different positions was confirmed by XRD, XPS, and electrochemical studies. The investigations have shown that the introduction of Mg in TM layers is preferable in terms of the electrochemical performance. The sample doped with Mg at the TM positions shows better cyclability and higher discharge capacity than the undoped sample. The poor electrochemical properties of the sample doped with Mg at Li positions are due to the kinetic hindrance of oxidation of the manganese-containing species formed after activation of the Li2MnO3 component of the composite oxide. The oxide LR-Mg(st) demonstrates the lowest lithium-ion diffusion coefficient and the greatest polarization resistance compared to LR and LR-Mg.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 465
Author(s):  
Yuanyuan Zhu ◽  
Yang Huang ◽  
Rong Du ◽  
Ming Tang ◽  
Baotian Wang ◽  
...  

LiNi1−x−yMnxCoyO2 materials are a typical class of layered cathode materials with excellent electrochemical performance in lithium-ion batteries. Molecular dynamics simulations are performed for LiNi1−x−yMnxCoyO2 materials with different transition metal ratios. The Li/Ni exchange ratio, ratio of anti-site Ni2+ to total Ni2+, and diffusion coefficient of Li ions in these materials are calculated. The results show that the Li-ion diffusion coefficient strongly depends on the ratio of anti-site Ni2+ to total Ni2+ because their variation tendencies are similar. In addition, the local coordination structure of the Li/Ni anti-site is analyzed.


2019 ◽  
Vol 4 (3) ◽  
pp. 1900073 ◽  
Author(s):  
Hong Zhao ◽  
Junxin Chen ◽  
Weiwei Wei ◽  
Shanming Ke ◽  
Xierong Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document