scholarly journals Effects of Mg Doping at Different Positions in Li-Rich Mn-Based Cathode Material on Electrochemical Performance

Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Elena Makhonina ◽  
Lidia Pechen ◽  
Anna Medvedeva ◽  
Yury Politov ◽  
Aleksander Rumyantsev ◽  
...  

Li-rich Mn-based layered oxides are among the most promising cathode materials for next-generation lithium-ion batteries, yet they suffer from capacity fading and voltage decay during cycling. The electrochemical performance of the material can be improved by doping with Mg. However, the effect of Mg doping at different positions (lithium or transition metals) remains unclear. Li1.2Mn0.54Ni0.13Co0.13O2 (LR) was synthesized by coprecipitation followed by a solid-state reaction. The coprecipitation stage was used to introduce Mg in TM layers (sample LR-Mg), and the solid-state reaction (st) was used to dope Mg in Li layers (LR-Mg(st)). The presence of magnesium at different positions was confirmed by XRD, XPS, and electrochemical studies. The investigations have shown that the introduction of Mg in TM layers is preferable in terms of the electrochemical performance. The sample doped with Mg at the TM positions shows better cyclability and higher discharge capacity than the undoped sample. The poor electrochemical properties of the sample doped with Mg at Li positions are due to the kinetic hindrance of oxidation of the manganese-containing species formed after activation of the Li2MnO3 component of the composite oxide. The oxide LR-Mg(st) demonstrates the lowest lithium-ion diffusion coefficient and the greatest polarization resistance compared to LR and LR-Mg.

2019 ◽  
Vol 22 (1) ◽  
pp. 173-179
Author(s):  
Thanh Dinh Duc ◽  
Anh My-Thi Nguyen ◽  
Tru Nhi Nguyen ◽  
Hang Thi La ◽  
Phung My Loan Le

Introduction: LiFePO4/C composites were synthesized via physical mixing assisted solvothermal process. Different kinds of carbon materials were investigated including 0D (carbon Ketjen black), 1D (carbon nanotubes) and 2D (graphene) materials. X-rays diffraction patterns of carbon coated LiFePO4 synthesized by solvothermal was indexed to pure crystalline phase without the emergence of second phase. LiFePO4 platelets and rods were in range size of 80-200 nm and dispersed well in carbon matrix. The lithium ion diffusion kinetics was evaluated through the calculated diffusion coefficients to explore the impact of carbon mixing. Methods: In this work, we studied the structure, morphologies and the lithium ion diffusion kinetic of LiFePO4/C composites for Li-ion batteries. Different characterization methods were used including powder X-rays (for crystalline structure); Transmission Electron Microscopy (for particle and morphologies observation) and Cyclic voltammetry (for electrochemical kinetic study). Results: The study indicated LiFePO4/C composites were successfully obtained by mixing process and the electrochemical performance throughout the calculated diffusion coefficient was significantly improved by adding the carbon types. Conclusion: The excellent ion diffusion was obtained for composites LiFePO4/Ketjen black (KB) and LiFePO4/CNT compared to LiFePO4/Graphene. KB could be a potential candidate for large-scale production due to low-cost, stable and high electrochemical performance.  


2019 ◽  
Vol 21 (19) ◽  
pp. 9883-9888 ◽  
Author(s):  
Kecheng Zhang ◽  
Bingkai Zhang ◽  
Mouyi Weng ◽  
Jiaxin Zheng ◽  
Shunning Li ◽  
...  

Mechanism of Li-ions diffusion in a one-dimension tunnel of COF-5 and structure of the COF-5@LiClO4@THF system.


Nanoscale ◽  
2015 ◽  
Vol 7 (37) ◽  
pp. 15075-15079 ◽  
Author(s):  
Jianbin Zhou ◽  
Ning Lin ◽  
Ying Han ◽  
Jie Zhou ◽  
Yongchun Zhu ◽  
...  

Cu3Si@Si core–shell nanoparticles are synthesized by a solid-state reaction and exhibit high electrochemical performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (59) ◽  
pp. 53662-53668 ◽  
Author(s):  
Shaokun Chong ◽  
Yongning Liu ◽  
Wuwei Yan ◽  
Yuanzhen Chen

Severe capacity fading and voltage decay of Li-rich layered oxides for lithium-ion batteries remain the major bottlenecks to commercialization.


RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90455-90461 ◽  
Author(s):  
Peng Lu ◽  
Xiaobing Huang ◽  
Yurong Ren ◽  
Jianning Ding ◽  
Haiyan Wang ◽  
...  

Na+ and Zr4+ co-doped lithium titanates were successfully synthesized via a solid-state reaction in air. Particularly, Li3.97Na0.03Ti4.97Zr0.03O12 exhibits the best rate capability. Even at 20C, it delivers a discharge capacity of 140 mA h g−1.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450016 ◽  
Author(s):  
Chenglin Hu ◽  
Yuping Wu ◽  
Yongnian Dai

Non-stoichiometric LiFe 1-x PO 4/ C composites were synthesized by a simple sol–gel method. Different impurities were detected in the X-ray diffraction measurements with the change of Fe content. The effects of Fe -poor on the structure and electrochemical performance of LiFePO 4 were investigated. Compared with stoichiometric LiFePO 4/ C , non-stoichiometric samples show better electrochemical performance because they have smaller impedance and faster lithium ion diffusion. Among these non-stoichiometric samples, LiFe 0.94 PO 4/ C cathode delivers the highest capacity of 149 mAh g-1 at 0.2 C and 103 mAh g-1 at 5 C and no capacity loss was found after 100 full cycles.


RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 6809-6817 ◽  
Author(s):  
D. D. Liang ◽  
H. F. Xiang ◽  
X. Liang ◽  
S. Cheng ◽  
C. H. Chen

In order to improve the electrochemical performance of LiCoO2 cathode in a high-voltage range of 3.0–4.5 V, spinel MgAl2O4 has been modified on the surface of LiCoO2 particle by a facile high-temperature solid state reaction.


Sign in / Sign up

Export Citation Format

Share Document