First-principles study of lithium-ion diffusion in β -Li 3 PS 4 for solid-state electrolytes

2018 ◽  
Vol 18 (5) ◽  
pp. 541-545 ◽  
Author(s):  
Myung-Soo Lim ◽  
Seung-Hoon Jhi
2019 ◽  
Vol 21 (19) ◽  
pp. 9883-9888 ◽  
Author(s):  
Kecheng Zhang ◽  
Bingkai Zhang ◽  
Mouyi Weng ◽  
Jiaxin Zheng ◽  
Shunning Li ◽  
...  

Mechanism of Li-ions diffusion in a one-dimension tunnel of COF-5 and structure of the COF-5@LiClO4@THF system.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Elena Makhonina ◽  
Lidia Pechen ◽  
Anna Medvedeva ◽  
Yury Politov ◽  
Aleksander Rumyantsev ◽  
...  

Li-rich Mn-based layered oxides are among the most promising cathode materials for next-generation lithium-ion batteries, yet they suffer from capacity fading and voltage decay during cycling. The electrochemical performance of the material can be improved by doping with Mg. However, the effect of Mg doping at different positions (lithium or transition metals) remains unclear. Li1.2Mn0.54Ni0.13Co0.13O2 (LR) was synthesized by coprecipitation followed by a solid-state reaction. The coprecipitation stage was used to introduce Mg in TM layers (sample LR-Mg), and the solid-state reaction (st) was used to dope Mg in Li layers (LR-Mg(st)). The presence of magnesium at different positions was confirmed by XRD, XPS, and electrochemical studies. The investigations have shown that the introduction of Mg in TM layers is preferable in terms of the electrochemical performance. The sample doped with Mg at the TM positions shows better cyclability and higher discharge capacity than the undoped sample. The poor electrochemical properties of the sample doped with Mg at Li positions are due to the kinetic hindrance of oxidation of the manganese-containing species formed after activation of the Li2MnO3 component of the composite oxide. The oxide LR-Mg(st) demonstrates the lowest lithium-ion diffusion coefficient and the greatest polarization resistance compared to LR and LR-Mg.


Author(s):  
Yuanyuan Huang ◽  
Yuran Yu ◽  
Hongjie Xu ◽  
Xiangdan Zhang ◽  
Zhuo Wang ◽  
...  

The Halide solid-state electrolytes (SSEs) have attracted great attention as potential electrolyte for all solid-state batteries (ASSBs) owing to their high oxidation potentials, excellent ductility, and good resilience to humidity....


Sign in / Sign up

Export Citation Format

Share Document