scholarly journals Dual-signal Amplification Strategy Aptasensor Based on Exonuclease III and Ordered Mesoporous Carbon-Gold Nanocomposites for Tetracycline Detection in Milk

Author(s):  
Zengning Liu ◽  
Carbon ◽  
2020 ◽  
Vol 170 ◽  
pp. 236-244
Author(s):  
Wonhee Kim ◽  
Jiyeon Lee ◽  
Seungmin Lee ◽  
KwangSup Eom ◽  
Chanho Pak ◽  
...  

2021 ◽  
pp. 103186
Author(s):  
Asna Mariyam ◽  
Jyoti Mittal ◽  
Farzeen Sakina ◽  
Richard T. Baker ◽  
Ashok K. Sharma ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4349
Author(s):  
Anupriya K. Haridas ◽  
Natarajan Angulakshmi ◽  
Arul Manuel Stephan ◽  
Younki Lee ◽  
Jou-Hyeon Ahn

Sodium-ion batteries (SIBs) are promising alternatives to lithium-based energy storage devices for large-scale applications, but conventional lithium-ion battery anode materials do not provide adequate reversible Na-ion storage. In contrast, conversion-based transition metal sulfides have high theoretical capacities and are suitable anode materials for SIBs. Iron sulfide (FeS) is environmentally benign and inexpensive but suffers from low conductivity and sluggish Na-ion diffusion kinetics. In addition, significant volume changes during the sodiation of FeS destroy the electrode structure and shorten the cycle life. Herein, we report the rational design of the FeS/carbon composite, specifically FeS encapsulated within a hierarchically ordered mesoporous carbon prepared via nanocasting using a SBA-15 template with stable cycle life. We evaluated the Na-ion storage properties and found that the parallel 2D mesoporous channels in the resultant FeS/carbon composite enhanced the conductivity, buffered the volume changes, and prevented unwanted side reactions. Further, high-rate Na-ion storage (363.4 mAh g−1 after 500 cycles at 2 A g−1, 132.5 mAh g−1 at 20 A g−1) was achieved, better than that of the bare FeS electrode, indicating the benefit of structural confinement for rapid ion transfer, and demonstrating the excellent electrochemical performance of this anode material at high rates.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 222
Author(s):  
Chenxin Fang ◽  
Ping Ouyang ◽  
Yuxing Yang ◽  
Yang Qing ◽  
Jialun Han ◽  
...  

A microRNA (miRNA) detection platform composed of a rolling circle amplification (RCA) system and an allosteric deoxyribozyme system is proposed, which can detect miRNA-21 rapidly and efficiently. Padlock probe hybridization with the target miRNA is achieved through complementary base pairing and the padlock probe forms a closed circular template under the action of ligase; this circular template results in RCA. In the presence of DNA polymerase, RCA proceeds and a long chain with numerous repeating units is formed. In the presence of single-stranded DNA (H1 and H2), multi-component nucleic acid enzymes (MNAzymes) are formed that have the ability to cleave substrates. Finally, substrates containing fluorescent and quenching groups and magnesium ions are added to the system to activate the MNAzyme and the substrate cleavage reaction, thus achieving fluorescence intensity amplification. The RCA–MNAzyme system has dual signal amplification and presents a sensing platform that demonstrates broad prospects in the analysis and detection of nucleic acids.


Sign in / Sign up

Export Citation Format

Share Document