scholarly journals A Sensitive Electrochemical Impedance DNA Biosensor Based on ZnO Nanorod Electrodes for BCR/ABL Fusion Gene Detection

Author(s):  
Jiao-yun Xia ◽  
2017 ◽  
Vol 214-215 ◽  
pp. 33-34
Author(s):  
Scott Newman ◽  
Clay McLeod ◽  
Yongjin Li ◽  
Xin Zhou ◽  
Jinghui Zhang
Keyword(s):  

2017 ◽  
Vol 29 (4) ◽  
pp. 413-423 ◽  
Author(s):  
Karen Y.P.S. Avelino ◽  
Rafael R. Silva ◽  
Alberto G. da Silva Junior ◽  
Maria D.L. Oliveira ◽  
César A.S. Andrade
Keyword(s):  

2021 ◽  
Author(s):  
Rongjun Yu ◽  
Jian Xue ◽  
Yang Wang ◽  
Jingfu Qiu ◽  
Xinyi Huang ◽  
...  

Abstract In this work, Ti3C2Tx MXene was identified as efficient nanozyme with area-dependent electrocatalytic activity in oxidation of phenolic compounds, which originated from the strong adsorption effect between the phenolic hydroxyl group and the oxygen atom on the surface of Ti3C2Tx MXene flake. On the basis of the novel electrocatalytic activity, Ti3C2Tx MXene was combined with alkaline phosphatase to construct a novel cascading catalytic amplification strategy using 1-naphthyl phosphate (1-NPP) as substrate, thereby realizing efficient electrochemical signal amplification. Taking advantage of the novel cascading catalytic amplification strategy, an electrochemical biosensor was fabricated for BCR/ABL fusion gene detection, which achieved excellent sensitivity with linear range from 0.2 fM to 20 nM and limit of detection down to 0.05 fM. This biosensor provided a promising tool for ultrasensitive fusion gene detection in early diagnosis of chronic myelogenous leukemia and acute lymphocytic leukemia. Moreover, the manageable catalytic activity of MXene broke a path for developing nanozymes, which possessed enormous application potential in not only electrochemical analysis but also the extensive fields including organic synthesis, pollutant disposal and so on.


2019 ◽  
Author(s):  
Christopher A. Hilker ◽  
Aditya V. Bhagwate ◽  
Jin Sung Jang ◽  
Jeffrey G Meyer ◽  
Asha A. Nair ◽  
...  

AbstractFormalin fixed paraffin embedded (FFPE) tissues are commonly used biospecimen for clinical diagnosis. However, RNA degradation is extensive when isolated from FFPE blocks making it challenging for whole transcriptome profiling (RNA-seq). Here, we examined RNA isolation methods, quality metrics, and the performance of RNA-seq using different approaches with RNA isolated from FFPE and fresh frozen (FF) tissues. We evaluated FFPE RNA extraction methods using six different tissues and five different methods. The reproducibility and quality of the prepared libraries from these RNAs were assessed by RNA-seq. We next examined the performance and reproducibility of RNA-seq for gene expression profiling with FFPE and FF samples using targeted (Kinome capture) and whole transcriptome capture based sequencing. Finally, we assessed Agilent SureSelect All-Exon V6+UTR capture and the Illumina TruSeq RNA Access protocols for their ability to detect known gene fusions in FFPE RNA samples. Although the overall yield of RNA varied among extraction methods, gene expression profiles generated by RNA-seq were highly correlated (>90%) when the input RNA was of sufficient quality (≥DV200 30%) and quantity (≥ 100 ng). Using gene capture, we observed a linear relationship between gene expression levels for shared genes that were captured using either All-Exon or Kinome kits. Gene expression correlations between the two capture-based approaches were similar using RNA from FFPE and FF samples. However, TruSeq RNA Access protocol provided significantly higher exon and junction reads when compared to the SureSelect All-Exon capture kit and was more sensitive for fusion gene detection. Our study established pre and post library construction QC parameters that are essential to reproducible RNA-seq profiling using FFPE samples. We show that gene capture based NGS sequencing is an efficient and highly reproducible strategy for gene expression measurements as well as fusion gene detection.


2016 ◽  
Author(s):  
Jason L. Weirather ◽  
Tyson A. Clark ◽  
Elizabeth Tseng ◽  
Jonas Korlach ◽  
Kin Fai Au
Keyword(s):  

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 356
Author(s):  
Kasimayan Uma ◽  
Elavarasan Muniranthinam ◽  
Siewhui Chong ◽  
Thomas C.-K Yang ◽  
Ja-Hon Lin

This report presents the synthesis of ZnO nanorod/α-Fe2O3 composites by the hydrothermal method with different weight percentages of α-Fe2O3 nanoparticles. The as-synthesized nanorod composites were characterized by different techniques, such as X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). From our results, it was found that the ZnO/α-Fe2O3 (3 wt%) nanorod composites exhibit a higher hydrogen evolution reaction (HER) activity when compared to other composites. The synergetic effect between ZnO and (3 wt%) of α-Fe2O3 nanocomposites resulted in a low onset potential of −125 mV, which can effectively produce more H2 than pure ZnO. The H2 production rate over the composite of ZnO/α-Fe2O3 (3 wt%) clearly shows a significant improvement in the photocatalytic activity in the heterojunction of the ZnO nanorods and α-Fe2O3 nanoparticles on nickel foam.


2016 ◽  
Vol 14 (5) ◽  
pp. 808-815 ◽  
Author(s):  
Ferdaous Maâtouk ◽  
Mouna Maâtouk ◽  
Karima Bekir ◽  
Houcine Barhoumi ◽  
Abderrazak Maaref ◽  
...  

In this work we report the development of an electrochemical DNA biosensor with high sensitivity for mercury ion detection. A new matrix based on gold nanoparticles (AuNPs)-glutathione (GSH)/cysteine was investigated. The interaction between DNA oligonucleotides and Hg2+ ions followed by the formation of Thymine–Hg2+–Thymine (T–Hg2+–T) structures was quantified using different electrochemical methods. It has been shown that the electrochemical impedance spectroscopy (EIS) measurements and the differential pulse voltammetry (DPV) confirmed the specific interaction between the oligonucleotide receptor layer and the Hg2+ ions. Besides, the developed sensor exhibited high sensitivity towards mercury among some examined metal ions such as Pb2+, Cu2+ and Cd2+. As a result, a high electrochemical response and low detection limit of 50 pM were estimated in the case of Hg2+ ions. The developed DNA biosensor was applied successfully to the determination of Hg2+ions in wastewater samples.


Sign in / Sign up

Export Citation Format

Share Document