Fabrication of Microstructures on RB-SiC by Ultrasonic Cavitation Assisted Micro-Electrical Discharge Machining

2013 ◽  
Vol 7 (6) ◽  
pp. 621-629 ◽  
Author(s):  
Pay Jun Liew ◽  
◽  
Keita Shimada ◽  
Masayoshi Mizutani ◽  
Jiwang Yan ◽  
...  

Ultrasonic cavitation assisted micro-electrical discharge machining was used to fabricate microstructures on reaction-bonded silicon carbide. To aid the removal of debris from the machining gap and to obtain a good surface finish, carbon nanofibers were added into the dielectric fluid. The suspension of carbon nanofibers in the dielectric fluid and the cavitation bubble effect induced by the vibration of the dielectric fluid proved to be effective in reducing the deposition of tool material on the workpiece surface. The tool material deposition rate was found to be significantly affected by the vibration amplitude and the distance between the oscillator and the workpiece. With a hemispherical electrode and inclined workpiece, high accuracy micro-dimples could be obtained within a short time. A nanometer-level surface finish was successfully obtained on a hard-brittle RB-SiCmoldmaterial.

2011 ◽  
Vol 264-265 ◽  
pp. 956-961 ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M.M. Rahman ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
M.A. Maleque

Electrical discharge machining (EDM) technique has been widely used in modern metal working industry for producing complex cavities in dies and moulds, which are otherwise difficult to create by conventional machining. The process has the advantage of being able to machine hardened tool steels. However, its low machining efficiency and poor surface finish restricted its further applications. To address these problems, one relatively new technique used to improve the efficiency and surface finish is EDM in the presence of powder suspended in the dielectric fluid. Powder mixed electric discharge machining (PMEDM) is one of the recent innovations for the enhancement of capabilities of EDM process. In PMEDM, the electrically conductive powder is mixed in the dielectric fluid of EDM, which reduces the insulating strength of the dielectric fluid and increases the spark gap between the tool and workpiece. As a result, the process becomes more stable, thereby, improving the material removal rate (MRR) and surface finish. Moreover, the surface develops high resistance to corrosion and abrasion. This paper presents the current research trends on dry, near dry EDM and review on research carried out in the area of PMEDM.


2020 ◽  
Vol 10 (11) ◽  
pp. 3795 ◽  
Author(s):  
Gunawan Setia Prihandana ◽  
Muslim Mahardika ◽  
Tutik Sriani

Micromachining in the micro-electric discharge machining (μ-EDM) process requires high material-removal rate with good surface quality. Power-mixed μ-EDM, a modified machining process by introducing specific powder into the dielectric fluid, is among the key inventions to achieving these requirements. This article presents a review of the implementation of powder-mixed micro-EDM processes for microfabrication. Special attention was given to the influence of the powder characteristics, such as the concentration, electrical conductivity, shape and size of the powder. Subsequently, when describing the use of powder for obtaining a high material-removal rate and surface quality, other major applications in μ-EDM for surface modification and geometrical accuracy were also discussed. Finally, some of the varied methods that are used in powder-mixed μ-EDM and industrialization challenges are extensively elaborated.


2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2018 ◽  
Vol 51 ◽  
pp. 198-207 ◽  
Author(s):  
Rimao Zou ◽  
Zuyuan Yu ◽  
Chengyang Yan ◽  
Jianzhong Li ◽  
Xin Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document